




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江名校新2024年数学高二上期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,且与互相平行,则的值为()A.-2 B.C. D.2.在空间直角坐标系中,若,,则()A. B.C. D.3.已知数列{an}的前n项和为Sn,满足a1=1,-=1,则an=()A.2n-1 B.nC.2n-1 D.2n-14.设,直线,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知:,:,若是的充分不必要条件,则实数的取值范围是()A. B.C. D.6.已知向量,,则下列向量中,使能构成空间的一个基底的向量是()A. B.C. D.7.已知实数a,b,c,若a>b,则下列不等式成立的是()A B.C. D.8.平行直线:与:之间的距离等于()A. B.C. D.9.已知等差数列的公差为,则“”是“数列为单调递增数列”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.集合,则集合A的子集个数为()A.2个 B.4个C.8个 D.16个11.已知直线的方程为,则该直线的倾斜角为()A. B.C. D.12.已知曲线的方程为,则下列说法正确的是()①曲线关于坐标原点对称;②曲线是一个椭圆;③曲线围成区域的面积小于椭圆围成区域的面积.A.① B.①②C.③ D.①③二、填空题:本题共4小题,每小题5分,共20分。13.四棱锥中,底面是一个平行四边形,,,,则四棱锥体积为_______14.在空间直角坐标系中,已知向量,则的值为__________.15.椭圆的离心率是______16.等差数列的前项和为,已知,则__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知多面体,,,均垂直于平面,,,,(1)证明:平面;(2)求直线平面所成的角的正弦值18.(12分)已知的内角的对边分别为a,,若向量,且(1)求角的值;(2)已知的外接圆半径为,求周长的最大值.19.(12分)已知数列中,,且满足(1)求证数列是等差数列,并求数列的通项公式;(2)求数列的前n项和20.(12分)已知圆C经过点,,且圆心C在直线上(1)求圆C的标准方程;(2)过点向圆C引两条切线PD,PE,切点分别为D,E,求切线PD,PE的方程,并求弦DE的长21.(12分)如图,已知椭圆的左顶点,过右焦点的直线与椭圆相交于两点,当直线轴时,.(1)求椭圆的方程;(2)记,的面积分别为,求的取值范围;(3)若的重心在圆上,求直线的斜率.22.(10分)如图,在直三棱柱中,,,与交于点,为的中点,(1)求证:平面;(2)求证:平面平面
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】应用空间向量坐标的线性运算求、的坐标,根据空间向量平行有,即可求的值.【题目详解】由题设,,,∵与互相平行,∴且,则,可得.故选:A2、B【解题分析】直接利用空间向量的坐标运算求解.【题目详解】解:因为,,所以.故选:B3、A【解题分析】由题可得,利用与的关系即求.【题目详解】∵a1=1,-=1,∴是以1为首项,以1为公差的等差数列,∴,即,∴当时,,当时,也适合上式,所以故选:A.4、A【解题分析】由可求得实数的值,再利用充分条件、必要条件的定义判断可得出结论.【题目详解】若,则,解得或,因此,“”是“”的充分不必要条件.故选:A.5、C【解题分析】由是的充分不必要条件,则是的充分不必要条件,再根据对应集合的包含关系可得答案.【题目详解】由,即,设,由是的充分不必要条件,则是的充分不必要条件所以,则故选:C6、D【解题分析】根据向量共面基本定理只需无解即可满足构成空间向量基底,据此检验各选项即可得解.【题目详解】因为,所以A中的向量不能与,构成基底;因为,所以B中的向量不能与,构成基底;对于,设,则,解得,,所以,故,,为共面向量,所以C中的向量不能与,构成基底;对于,设,则,此方程组无解,所以,,不共面,故D中的向量与,可以构成基底.故选:D7、C【解题分析】根据不等式的性质逐一分析即可得出答案.【题目详解】解:对于A,因为a>b,若,则,故A错误;对于B,若,则,故B错误;对于C,若a>b,又,所以,故C正确;对于D,当时,,故D错误.故选:C.8、B【解题分析】先由两条直线平行解出,再按照平行线之间距离公式求解.【题目详解】,则:,即,距离为.故选:B.9、C【解题分析】利用等差数列的定义和数列单调性的定义判断可得出结论.【题目详解】若,则,即,此时,数列为单调递增数列,即“”“数列为单调递增数列”;若等差数列为单调递增数列,则,即“”“数列为单调递增数列”.因此,“”是“数列为单调递增数列”的充分必要条件.故选:C.10、C【解题分析】取,再根据的周期为4,可得,即可得解.【题目详解】因为,所以.时,,时,,时,,时,,所以集合,所以的子集的个数为,故选:C.11、C【解题分析】设直线的倾斜角为,则,解方程即可.【题目详解】由已知,设直线的倾斜角为,则,又,所以.故选:C12、D【解题分析】对于①在方程中换为,换为可判断;对于②分析曲线的图形是两个抛物线的部分组成的可判断;对于③在第一象限内,分析椭圆的图形与曲线图形的位置关系可判断.【题目详解】在曲线的方程中,换为,换为,方程不变,故曲线关于坐标原点对称所以①正确,当时,曲线的方程化为,此时当时,曲线的方程化为,此时所以曲线图形是两个抛物线的部分组成的,不是椭圆,故②不正确.当,时,设,设,则,(当且仅当或时等号成立)所以在第一象限内,椭圆的图形在曲线的上方.根据曲线和椭圆的的对称性可得椭圆的图形在曲线的外部(四个顶点在曲线上)所以曲线围成区域的面积小于椭圆围成区域的面积,故③正确.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】计算,,得到底面,计算,,计算体积得到答案.【题目详解】由,,所以底面,,故,体积为.故答案为:16.14、【解题分析】由题知,进而根据向量数量积运算的坐标表示求解即可.【题目详解】解:因为向量,所以,所以故答案为:15、【解题分析】求出、、的值,即可得出椭圆的离心率.【题目详解】在椭圆中,,,,因此,椭圆的离心率是.故答案为:.16、【解题分析】根据等差数列的求和公式和等差数列的性质即可求出.【题目详解】因为等差数列的前项和为,,则,故答案为:33.【题目点拨】本题考查了等差数列的求和公式和等差数列的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解题分析】(1)由已知条件可得,,则,,再利用线面垂直的判定定理可证得结论;(2)如图,过点作,交直线于点,连接,可证得平面,从而是与平面所成的角,然后在求解即可【题目详解】(1)证明:由,,,,得,所以,由由,,,,得,由,得,由,得,所以,故,又,因此平面(2)解如图,过点作,交直线于点,连接由平面,平面,得平面平面,由,得平面,所以是与平面所成的角由,,得,,所以,故因此,直线与平面所成的角的正弦值是【题目点拨】关键点点睛:此题考查线面垂直的判定和线面角的求法,解题的关键是通过过点作,交直线于点,连接,然后结合条件可证得是与平面所成的角,从而在三角形中求解即可,考查推理能力和计算能力,属于中档题18、(1)(2)6【解题分析】(1)由可得,再利用正弦定理和三角函数恒等变换公可得,从而可求出角的值,(2)利用正弦定理求出,再利用余弦定理结合基本不等式可得的最大值为4,从而可求出三角形周长的最大值【小问1详解】由,得
,由正弦定理,得,即.在中,由,得.又,所以.【小问2详解】根据题意,得,由余弦定理,得,即,整理得,当且仅当时,取等号,所以的最大值为所以.所以的周长的最大值为
.19、(1)证明见解析;;(2).【解题分析】(1)根据等差数列的定义证明为常数即可;(2)利用错位相减法即可求和.【小问1详解】由得,,∴数列是以1为首项,1为公差的等差数列,∴,∴;【小问2详解】①,②,①-②得:,.20、(1)(2)或,【解题分析】(1)设圆心,根据圆心在直线上及圆过两点建立方程求解即可;(2)分切线的斜率存在与不存在分类讨论,利用圆心到切线的距离等于半径求解,再根据圆的切线的几何性质求弦长即可.【小问1详解】设圆心,因为圆心C在直线上,所以①因为A,B是圆上的两点,所以,所以,即②联立①②,解得,所以圆C的半径,所以圆C的标准方程为【小问2详解】若过点P的切线斜率不存在,则切线方程为若过点P的切线斜率存在,设为k,则切线方程为,即由,解得,所以切线方程为综上,过点P的圆C的切线方程为或设PC与DE交于点F,因为,,PC垂直平分DE,所以,所以所以21、(1)(2)(3)【解题分析】(1)根据已知条件得到,,即可得到椭圆的方程.(2)首先设直线为,与椭圆联立得到,根据得到的范围,从而得到的范围.(3)设重心,根据重心性质得到,,再代入求解即可.小问1详解】因为左顶点,所以,根据,可得,解得,所以;【小问2详解】设直线为,则,则,,那么,根据解得,所以.【小问3详解】设重心,则:,,所以,所以,即所求直线的斜率为.22、(1)证明见解析(2)证明见解析【解题分析】(1)根据直棱柱的性质、平行四边形的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆八中学、九十五中学等校2024-2025学年普通中考第一次适应性检测试题物理试题含解析
- 新疆应用职业技术学院《企业与公司制度》2023-2024学年第二学期期末试卷
- 河北省沧州任丘市重点中学2024-2025学年初三考前全真模拟密卷化学试题试卷(1)含解析
- 山东省潍坊市寒亭达标名校2025届初三省重点高中三校联考语文试题试卷含解析
- 厦门大学《流行歌曲演唱》2023-2024学年第二学期期末试卷
- 西南交通大学希望学院《节奏训练III》2023-2024学年第一学期期末试卷
- 浙江省金华市重点中学2025年高三下学期5月月考数学试题含解析
- 浙江东方职业技术学院《城市绿地系统规划》2023-2024学年第二学期期末试卷
- 宁德职业技术学院《生物分离工(全英文)》2023-2024学年第二学期期末试卷
- 南阳理工学院《中国音乐史与作品欣赏》2023-2024学年第二学期期末试卷
- 2025年河北省唐山市中考一模道德与法治试题(含答案)
- 放疗皮肤反应分级护理
- 2025年03月内蒙古鄂尔多斯市东胜区事业单位引进高层次人才和紧缺专业人才50人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 卫生院全国预防接种日宣传活动总结(8篇)
- 小学消防知识教育
- 安徽2025年03月合肥高新技术产业开发区管理委员会公开招考60名工作人员笔试历年参考题库考点剖析附解题思路及答案详解
- 2025年第三届天扬杯建筑业财税知识竞赛题库附答案(601-700题)
- 2025年四川绵阳市投资控股(集团)有限公司招聘笔试参考题库附带答案详解
- 劳务派遣劳务外包服务方案(技术方案)
- 高一信息技术第六章结构图
- 豆各庄乡土地储备住宅房屋腾退补偿安置办法
评论
0/150
提交评论