内蒙古赤峰市翁牛特旗乌丹二中2024届高二上数学期末达标检测试题含解析_第1页
内蒙古赤峰市翁牛特旗乌丹二中2024届高二上数学期末达标检测试题含解析_第2页
内蒙古赤峰市翁牛特旗乌丹二中2024届高二上数学期末达标检测试题含解析_第3页
内蒙古赤峰市翁牛特旗乌丹二中2024届高二上数学期末达标检测试题含解析_第4页
内蒙古赤峰市翁牛特旗乌丹二中2024届高二上数学期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古赤峰市翁牛特旗乌丹二中2024届高二上数学期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知两直线方程分别为l1:x+y=1,l2:ax+2y=0,若l1⊥l2,则a=()A2 B.-2C. D.2.命题“,使”的否定是()A.,有 B.,有C.,使 D.,使3.设点P是双曲线,与圆在第一象限的交点,、分别是双曲线的左、右焦点,且,则此双曲线的离心率为()A. B.C. D.34.圆与圆的位置关系是()A.相离 B.内含C.相切 D.相交5.若直线与直线垂直,则()A.6 B.4C. D.6.已知圆,直线,直线l被圆O截得的弦长最短为()A. B.C.8 D.97.函数在点处的切线方程的斜率是()A. B.C. D.8.如图,在三棱锥中,是线段的中点,则()A. B.C. D.9.数列满足,且,则的值为()A.2 B.1C. D.-110.设直线与双曲线(,)的两条渐近线分别交于,两点,若点满足,则该双曲线的离心率是()A. B.C. D.11.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件12.过双曲线的左焦点作x轴的垂线交曲线C于点P,为右焦点,若,则双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若抛物线经过点,则__________.14.已知一个样本数据为3,3,5,5,5,7,7,现在新加入一个3,一个5,一个7得到一个新样本,则与原样本数据相比,新样本数据平均数______,方差______.(“变大”、“变小”、“不变”)15.如图三角形数阵:132456109871112131415……按照自上而下,自左而右的顺序,位于第行的第列,则______.16.日常生活中的饮用水通常是经过净化的.随着水的纯净度的提高,所需净化费用不断増加.已知将吨水净化到纯净度为时所需费用(单位:元)为.则净化到纯净度为时所需费用的瞬时变化率是净化到纯净度为时所需费用的瞬时变化率的___________倍,这说明,水的纯净度越高,净化费用增加的速度越___________(填“快”或“慢”).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知动点到点的距离与点到直线的距离相等.(1)求动点的轨迹方程;(2)若过点且斜率为的直线与动点的轨迹交于、两点,求三角形AOB的面积.18.(12分)已知在平面直角坐标系中,圆A:的圆心为A,过点B(,0)任作直线l交圆A于点C、D,过点B作与AD平行的直线交AC于点E.(1)求动点E的轨迹方程;(2)设动点E的轨迹与y轴正半轴交于点P,过点P且斜率为k1,k2的两直线交动点E的轨迹于M、N两点(异于点P),若,证明:直线MN过定点.19.(12分)甲、乙等6个班级参加学校组织广播操比赛,若采用抽签的方式随机确定各班级的出场顺序(序号为1,2,…,6),求:(1)甲、乙两班级的出场序号中至少有一个为奇数的概率;(2)甲、乙两班级之间的演出班级(不含甲乙)个数X的分布列与期望20.(12分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC//AD,AD=2BC=2PA=2AB=2,E,F,G分别为线段AD,DC,PB的中点.(1)证明:直线PF//平面ACG;(2)求直线PD与平面ACG所成角的正弦值.21.(12分)已知圆心C的坐标为,且是圆C上一点(1)求圆C的标准方程;(2)过点的直线l被圆C所截得的弦长为,求直线l的方程22.(10分)已知函数.(1)当时,求函数的极大值与极小值;(2)若函数在上的最大值是最小值的3倍,求a的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】直接利用直线垂直公式计算得到答案.【题目详解】因为l1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故选:【题目点拨】本题考查了根据直线垂直计算参数,属于简单题.2、B【解题分析】根据特称命题的否定是全称命题即可得正确答案【题目详解】存在量词命题的否定,只需把存在量词改成全称量词,并把后面的结论否定,所以“,使”的否定为“,有”,故选:B.3、C【解题分析】根据几何关系得到是直角三角形,然后由双曲线的定义及勾股定理可求解.【题目详解】点到原点的距离为,又因为在中,,所以是直角三角形,即.由双曲线定义知,又因为,所以.在中,由勾股定理得,化简得,所以.故选:C.4、D【解题分析】先由圆的方程得出两圆的圆心坐标和半径,求出两圆心间的距离与两半径之和与差比较可得答案.【题目详解】圆的圆心为,半径为圆的圆心为,半径为两圆心间的距离为由,所以两圆相交.故选:D5、A【解题分析】由两条直线垂直的条件可得答案.【题目详解】由题意可知,即故选:A.6、B【解题分析】先求得直线过定点,再根据当点与圆心连线垂直于直线l时,被圆O截得的弦长最短求解.【题目详解】因为直线方程,即为,所以直线过定点,因为点在圆的内部,当点与圆心连线垂直于直线l时,被圆O截得的弦长最短,点与圆心(0,0)的距离为,此时,最短弦长为,故选:B7、D【解题分析】求解导函数,再由导数的几何意义得切线的斜率.【题目详解】求导得,由导数的几何意义得,所以函数在处切线的斜率为.故选:D8、A【解题分析】根据给定几何体利用空间向量基底结合向量运算计算作答.【题目详解】在三棱锥中,是线段的中点,所以:.故选:A9、D【解题分析】根据数列的递推关系式,求得数列的周期性,结合周期性得到,即可求解.【题目详解】解:由题意,数列满足,且,可得,可得数列是以三项为周期的周期数列,所以.故选:D.10、C【解题分析】先求出,的坐标,再求中点坐标,利用点满足,可得,从而求双曲线的离心率.【题目详解】解:由双曲线方程可知,渐近线为,分别于联立,解得:,,所以中点坐标为,因为点满足,所以,所以,即,所以.故选:C.【题目点拨】本题考查双曲线的离心率,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.11、D【解题分析】根据充分条件、必要条件的判定方法,结合不等式的性质,即可求解.【题目详解】由,可得,即,当时,,但的符号不确定,所以充分性不成立;反之当时,也不一定成立,所以必要性不成立,所以是的即不充分也不必要条件.故选:D.12、D【解题分析】由题知是等腰直角三角形,,又根据通径的结论知,结合可列出关于的二次齐次式,即可求解离心率.【题目详解】由题知是等腰直角三角形,且,,又,,即,,,即,解得,,.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】将点代入抛物线方程即可得出答案.【题目详解】解:因为抛物线经过点,所以,即.故答案为:2.14、①.不变②.变大【解题分析】通过计算平均数和方差来确定正确答案.【题目详解】原样本平均数为,原样本方差为,新样本平均数为,新样本方差为.所以平均数不变,方差变大.故答案为:不变;变大15、【解题分析】由题意可知到第行结束一共有个数字,由此可知在第行;又由图可知,奇数行从左到右是从小到大排列,偶数行从左到右是从大到小排列,第行个数字从大到小排列,由此可知在到数第列,据此即可求出,进而求出结果.【题目详解】由图可知,第1行有1个数字,第2行有2个数字,第2行有3个数字,……第行有个数字,由此规律可知,到第行结束一共有个数字;又当时,,所以第行结束一共有个数字;当时,,所以在第行,故;由图可知,奇数行从左到右是从小到大排列,偶数行从左到右是从大到小排列,第行是偶数行,共个数字,从大到小排列,所以在倒数第列,所以,所以.故答案为:.16、①.②.快【解题分析】根据导数的概念可知净化所需费用的瞬时变化率即为函数的一阶导数,即先对函数求导,然后将和代入进行计算,再求,即可得到结果,进而能够判断水的纯净度越高,净化费用增加的速度的快慢【题目详解】由题意,可知净化所需费用的瞬时变化率为,所以,,所以,所以净化到纯净度为时所需费用的瞬时变化率是净化到纯净度为时所需费用的瞬时变化率的倍;因为,可知水的纯净度越高,净化费用增加的速度越快.故答案为:,快.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】小问1:由抛物线的定义可求得动点的轨迹方程;小问2:可知直线的方程为,设点、,将直线的方程与抛物线的方程联立,求出的值,利用抛物线的定义可求得的值,结合面积公式即可求解小问1详解】由题意点的轨迹是以为焦点,直线为准线的抛物线,所以,则,所以动点的轨迹方程是.【小问2详解】由已知直线的方程是,设、,由得,,所以,则,故,18、(1)(2)证明见解析【解题分析】(1)作出图象,易知|EB|+|EA|为定值,根据椭圆定义即可判断点E的轨迹,从而写出其轨迹方程;(2)设,当直线MN斜率存在时,设直线MN的方程为:,联立MN方程和E的轨迹方程得根与系数的关系,根据解出k与m的关系即可以判断MN过定点;最后再考虑MN斜率不存在时是否也过该定点即可.【小问1详解】由圆A:可得(,∴圆心A(-,0),圆的半径r=8,,,可得,,,由椭圆的定义可得:点E的轨迹是以A(,0)、B(,0)为焦点,2a=8的椭圆,即a=4,c=,∴=16-7=9,∴动点E的轨迹方程为;【小问2详解】由(1)知,P(0,3),设,当直线MN的斜率存在时,设直线MN的方程为:,由,可得,∴,,∵,∴,即,整理可得:,∴k=m+3或m=3,当m=3时,直线MN的方程为:,此时过点P(0,3)不符合题意,∴k=m+3,∴直线MN的方程为:此时直线MN过点(-1,-3),当直线MN的斜率不存在时,,,解得,此时直线MN的方程为:,过点(-1,-3),综上所述:直线MN过定点(-1,-3).19、(1)(2)X01234p期望为.【解题分析】(1)求出甲、乙两班级的出场序号中均为偶数的概率,进而求出答案;(2)求出X的可能取值及相应的概率,写出分布列,求出期望值.【小问1详解】由题意得:甲、乙两班级的出场序号中均为偶数的概率为,故甲、乙两班级的出场序号中至少有一个为奇数的概率;【小问2详解】X的可能取值为0,1,2,3,4,,,,故分布列为:X01234p数学期望为20、(1)证明见解析(2)【解题分析】(1)连接EC,设EB与AC相交于点O,结合已知条件利用线面平行的判定定理可证得OG//平面PEF,再由三角形中位线定理结合线面垂直的判定定理可得AC//平面PEF,从而由面面垂直的判定可得平面PEF//平面GAC,进而可证得结论,(2)由已知可证得PA、AB、AD两两互相垂直,以A为原点,AB,AD,AP所在的直线为x轴,y轴,z轴,建立空间直角坐标系,利用空间向量求解即可【小问1详解】证明:连接EC,设EB与AC相交于点O,如图,因为BC//AD,且,AB⊥AD,所以四边形ABCE为矩形,所以O为EB的中点,又因为G为PB的中点,所以OG为△PBE的中位线,即OG∥PE,因为OG平面PEF,PE⊂平面PEF,所以OG//平面PEF,因为E,F分别为线段AD,DC的中点,所以EF//AC,因为AC平面PEF,EF⊂平面PEF,所以AC//平面PEF,因为OG⊂平面GAC,AC⊂平面GAC,AC∩OG=O,所以平面PEF//平面GAC,因为PF⊂平面PEF,所以PF//平面GAC.【小问2详解】因为PA⊥底面ABCD,AB⊂平面ABCD,AD⊂平面ABCD,所以PA⊥AB,PA⊥AD,因为AB⊥AD,所以PA、AB、AD两两互相垂直,以A为原点,AB,AD,AP所在的直线为x轴,y轴,z轴,建立空间直角坐标系,如图所示:则A(0,0,0),,C(1,1,0),D(0,2,0),P(0,0,1),所以,设平面ACG的法向量为,则,所以,令x=1,可得y=﹣1,z=﹣1,所以,设直线PD与平面ACG所成角为θ,则,所以直线PD与平面ACG所成角的正弦值为.21、(1)(2)或【解题分析】(1)计算圆的半径,写出圆的标准方程即可;(2)先验证斜率不存在时,是否满足题意,再分析斜率存在时,利用点到直线距离求出斜率即可得解.【小问1详解】由题意得:所以,圆C的标准方程为【小问2详解】当直线l斜率不存在时,直线l的方程为,此时所截得的线段的长为,符合题意当直线l的斜率存在时,设l的方程为,即,圆心到直线l的距

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论