江苏省徐州市睢宁县第一中学2024学年高二上数学期末统考试题含解析_第1页
江苏省徐州市睢宁县第一中学2024学年高二上数学期末统考试题含解析_第2页
江苏省徐州市睢宁县第一中学2024学年高二上数学期末统考试题含解析_第3页
江苏省徐州市睢宁县第一中学2024学年高二上数学期末统考试题含解析_第4页
江苏省徐州市睢宁县第一中学2024学年高二上数学期末统考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省徐州市睢宁县第一中学2024学年高二上数学期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我们通常称离心率是的椭圆为“黄金椭圆”.如图,已知椭圆,,,,分别为左、右、上、下顶点,,分别为左、右焦点,为椭圆上一点,下列条件中能使椭圆为“黄金椭圆”的是()A. B.C.轴,且 D.四边形的一个内角为2.如图,已知,分别是椭圆的左、右焦点,现以为圆心作一个圆恰好经过椭圆的中心并且交椭圆于点,.若过点的直线是圆的切线,则椭圆的离心率为()A. B.C. D.3.对于实数a,b,c,下列命题中的真命题是()A.若,则 B.,则C.若,,则, D.若,则4.已知等差数列的前n项和为,且,,则为()A. B.C. D.5.下列说法正确的有()个.①向量,,,不一定成立;②圆与圆外切③若,则数是数,的等比中项.A.1 B.2C.3 D.06.已知双曲线方程为,过点的直线与双曲线只有一个公共点,则符合题意的直线的条数共有()A.4条 B.3条C.2条 D.1条7.若双曲线经过点,且它的两条渐近线方程是,则双曲线的方程是()A. B.C. D.8.已知圆,直线,直线l被圆O截得的弦长最短为()A. B.C.8 D.99.设为实数,则曲线:不可能是()A.抛物线 B.双曲线C.圆 D.椭圆10.若圆C:上有到的距离为1的点,则实数m的取值范围为()A. B.C. D.11.现有4本不同的书全部分给甲、乙、丙3人,每人至少一本,则不同的分法有()A.12种 B.24种C.36种 D.48种12.已知分别表示随机事件发生的概率,那么是下列哪个事件的概率()A事件同时发生B.事件至少有一个发生C.事件都不发生D事件至多有一个发生二、填空题:本题共4小题,每小题5分,共20分。13.古希腊数学家阿波罗尼斯发现:平面上到两定点A,B的距离之比为常数的点的轨迹是—个圆心在直线上的圆.该圆被称为阿氏圆,如图,在长方体中,,点E在棱上,,动点P满足,若点P在平面内运动,则点P对应的轨迹的面积是___________;F为的中点,则三棱锥体积的最小值为___________.14.已知抛物线,则的准线方程为______.15.已知双曲线的左、右焦点分别为,,O为坐标原点,点M是双曲线左支上的一点,若,,则双曲线的离心率是____________16.已知椭圆的左、右焦点分别为,,过点的直线与椭圆交于A,B两点,线段AB的长为5,若,那么△的周长是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设曲线在点(1,0)处的切线方程为.(1)求a,b的值;(2)求证:;(3)当,求a的取值范围.18.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,满足(2a﹣b)sinA+(2b﹣a)sinB=2csinC.(1)求角C的大小;(2)若cosA=,求的值.19.(12分)已知数列的首项,且满足.(1)求证:数列是等比数列;(2)求数列的前n项和.20.(12分)如图,是平行四边形,已知,,平面平面.(1)证明:;(2)若,求平面与平面所成二面角的平面角的余弦值21.(12分)已知的内角的对边分别为a,,若向量,且(1)求角的值;(2)已知的外接圆半径为,求周长的最大值.22.(10分)已知函数f(x)=x﹣lnx(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求函数f(x)的极值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】先求出椭圆的顶点和焦点坐标,对于A,根据椭圆的基本性质求出离心率判断A;对于B,根据勾股定理以及离心率公式判断B;根据结合斜率公式以及离心率公式判断C;由四边形的一个内角为,即即三角形是等边三角形,得到,结合离心率公式判断D.【题目详解】∵椭圆∴对于A,若,则,∴,∴,不满足条件,故A不符合条件;对于B,,∴∴,∴∴,解得或(舍去),故B符合条件;对于C,轴,且,∴∵∴,解得∵,∴∴,不满足题意,故C不符合条件;对于D,四边形的一个内角为,即即三角形是等边三角形,∴∴,解得∴,故D不符合条件故选:B【题目点拨】本题主要考查了求椭圆离心率,涉及了勾股定理,斜率公式等的应用,充分利用建立的等式是解题关键.2、A【解题分析】由切线的性质,可得,,再结合椭圆定义,即得解【题目详解】因为过点的直线圆的切线,,,所以由椭圆定义可得,可得椭圆的离心率故选:A3、C【解题分析】对于选项A,可以举反例判断;对于选项BCD可以利用作差法判断得解.【题目详解】解:A.若,则不一定成立.如:.所以该选项错误;B.,所以,所以该选项错误;C.,所以该选项正确;D.,所以该选项错误.故选:C4、C【解题分析】直接由等差数列求和公式结合,求出,再由求和公式求出即可.【题目详解】由题意知:,解得,则.故选:C.5、A【解题分析】由向量数量积为实数,以及向量共线定理,即可判断①;求出圆心距,即可判断两圆位置关系,从而判断②;取,即可判断③【题目详解】对于①,与共线,与共线,故不一定成立,故①正确;对于②,圆的圆心为,半径为,圆可变形为,故其圆心为,半径为,则圆心距,由,所以两圆相交,故②错误;对于③,若,取,则数不是数的等比中项,故③错误故选:A6、A【解题分析】利用双曲线渐近线的性质,结合一元二次方程根的判别式进行求解即可.【题目详解】解:双曲线的渐近线方程为,右顶点为.①直线与双曲线只有一个公共点;②过点平行于渐近线时,直线与双曲线只有一个公共点;③设过的切线方程为与双曲线联立,可得,由,即,解得,直线的条数为1.综上可得,直线的条数为4.故选:A,.7、A【解题分析】根据双曲线渐近线方程设出方程,再由其过的点即可求解.【题目详解】渐近线方程是,设双曲线方程为,又因为双曲线经过点,所以有,所以双曲线方程为,化为标准方程为.故选:A8、B【解题分析】先求得直线过定点,再根据当点与圆心连线垂直于直线l时,被圆O截得的弦长最短求解.【题目详解】因为直线方程,即为,所以直线过定点,因为点在圆的内部,当点与圆心连线垂直于直线l时,被圆O截得的弦长最短,点与圆心(0,0)的距离为,此时,最短弦长为,故选:B9、A【解题分析】根据圆的方程、椭圆的方程、双曲线的方程和抛物线的方程特征即可判断.【题目详解】解:对A:因为曲线C的方程中都是二次项,所以根据抛物线标准方程的特征曲线C不可能是抛物线,故选项A正确;对B:当时,曲线C为双曲线,故选项B错误;对C:当时,曲线C为圆,故选项C错误;对D:当且时,曲线C为椭圆,故选项D错误;故选:A.10、C【解题分析】利用圆与圆的位置关系进行求解即可.【题目详解】将圆C的方程化为标准方程得,所以.因为圆C上有到的距离为1的点,所以圆C与圆:有公共点,所以因为,所以,解得,故选:C11、C【解题分析】先把4本书按2,1,1分为3组,再全排列求解.【题目详解】先把4本书按2,1,1分为3组,再全排列,则有种分法,故选:C12、C【解题分析】表示事件至少有一个发生概率,据此得到答案.【题目详解】分别表示随机事件发生的概率,表示事件至少有一个发生的概率,故表示事件都不发生的概率.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解题分析】建立空间直角坐标系,根据,可得对应的轨迹方程;先求的面积,其是固定值,要使体积最小,只需求点到平面的距离的最小值即可.【题目详解】分别以为轴建系,设,而,,,,.由,有,化简得对应的轨迹方程为.所以点P对应的轨迹的面积是.易得的三个边即是边长为为的等边三角形,其面积为,,设平面的一个法向量为,则有,可取平面的一个法向量为,根据点的轨迹,可设,,所以点到平面的距离,所以故答案为:;14、##【解题分析】根据抛物线的方程求出的值即得解.【题目详解】解:因为抛物线,所以,所以的准线方程为.故答案为:15、5【解题分析】根据得出,设,从而利用双曲线的定义可求出,的关系,从而可求出答案.【题目详解】设双曲线的焦距为,则,因为,所以,因为,不妨设,,由双曲线的定义可得,所以,,由勾股定理可得,,所以,所以双曲线的离心率故答案为:.16、16【解题分析】利用椭圆的定义可知,又△的周长,即可求焦点三角形的周长.【题目详解】由椭圆定义知:,所以△的周长为.故答案为:16.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析(3)【解题分析】(1)求导,根据导数的几何意义,令x=1处的切线的斜率等1,结合,即可求得a和b的值;(2)利用(1)的结论,构造函数,求求导数,判断单调性,求出最小值即可证明;(3)根据条件构造函数,求出其导数,分类讨论导数的值的情况,根据单调性,判断函数的最小值情况,即可求得答案.【小问1详解】由题意知:,因为曲线在点(1,0)处的切线方程为,故,即;【小问2详解】证明:由(1)知:,令,则,当时,,单调递减,当时,,单调递增,所以当时,取得极小值,也即最小值,最小值为,故,即成立;【小问3详解】当,即,(),设,(),则,当时,由得,此时,此时在时单调递增,,适合题意;当时,,此时在时单调递增,,适合题意;当时,,此时,此时在时单调递增,,适合题意;当时,,此时在内,,在内,,故,显然时,,不满足当恒成立,综上述:.18、(1)(2)【解题分析】(1)利用正弦定理、余弦定理化简已知条件,求得,由此求得.(2)先求得,结合两角差的正弦公式求得.【小问1详解】,,即,,,.【小问2详解】由,可得,.19、(1)证明见解析;(2)当为偶数时,;当为奇数时,.【解题分析】(1)根据等比数列的定义进行证明即可;(2)利用分组求和法,结合错位相减法进行求解即可.【小问1详解】由题知:所以又因为所以所以数列为以-1为首项,-1为公比的等比数列;【小问2详解】由(1)知:,所以,,记,所以,当为偶数时,;当为奇数时,;记两式相减得:,所以,所以,当偶数时,;当为奇数时,.20、(1)见解析;(2).【解题分析】(1)推导出,取BC的中点F,连结EF,可推出,从而平面,进而,由此得到平面,从而;(2)以为坐标原点,,所在直线分别为,轴,以过点且与平行的直线为轴,建立空间直角坐标系,利用向量法能求出平面与平面所成二面角的余弦值【题目详解】(1)∵是平行四边形,且∴,故,即取BC的中点F,连结EF.∵∴又∵平面平面∴平面∵平面∴∵平面∴平面,∵平面∴(2)∵,由(Ⅰ)得以为坐标原点,所在直线分别为轴,建立空间直角坐标系(如图),则∴设平面的法向量为,则,即得平面一个法向量为由(1)知平面,所以可设平面的法向量为设平面与平面所成二面角的平面角为,则即平面与平面所成二面角的平面角的余弦值为.【题目点拨】用空间向量求解立体几何问题的注意点(1)建立坐标系时要确保条件具备,即要证明得到两两垂直的三条直线,建系后要准确求得所需点的坐标(2)用平面的法向量求二面角的大小时,要注意向量的夹角与二面角大小间的关系,这点需要通过观察图形来判断二面角是锐角还是钝角,然后作出正确的结论21、(1)(2)6【解题分析】(1)由可得,再利用正弦定理和三角函数恒等变换公可得,从而可求出角的值,(2)利用正弦定理求出,再利用余弦定理结合基本不等式可得的最大值为4,从而可求出三角形周长的最大值【小问1详解】由,得

,由正弦定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论