2024届江西省吉安市峡江县峡江中学数学高二上期末学业质量监测模拟试题含解析_第1页
2024届江西省吉安市峡江县峡江中学数学高二上期末学业质量监测模拟试题含解析_第2页
2024届江西省吉安市峡江县峡江中学数学高二上期末学业质量监测模拟试题含解析_第3页
2024届江西省吉安市峡江县峡江中学数学高二上期末学业质量监测模拟试题含解析_第4页
2024届江西省吉安市峡江县峡江中学数学高二上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省吉安市峡江县峡江中学数学高二上期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数,若实数是函数的零点,且,则()A. B.C. D.无法确定2.已知,是椭圆的两焦点,是椭圆上任一点,从引外角平分线的垂线,垂足为,则点的轨迹为()A.圆 B.两个圆C.椭圆 D.两个椭圆3.数列满足,,则()A. B.C. D.24.已知直线l1:y=x+2与l2:2ax+y﹣1=0垂直,则a=()A. B.C.﹣1 D.15.为了解青少年视力情况,统计得到名青少年的视力测量值(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数,则该组数据的中位数是()A. B.C. D.6.设函数,,,则()A. B.C. D.7.已知集合M={0,x},N={1,2},若M∩N={2},则M∪N=()A.{0,x,1,2} B.{2,0,1,2}C.{0,1,2} D.不能确定8.数列中,满足,,设,则()A. B.C. D.9.某大学数学系共有本科生1500人,其中一、二、三、四年级的人数比为,要用分层随机抽样的方法从中抽取一个容量为300的样本,则应抽取的三年级学生的人数为()A.20 B.40C.60 D.8010.在空间直角坐标系中,已知点M是点在坐标平面内的射影,则的坐标是()A. B.C. D.11.某种疾病的患病率为0.5%,通过验血诊断该病的误诊率为2%,即非患者中有2%的人验血结果为阳性,患者中有2%的人验血结果为阴性,随机抽取一人进行验血,则其验血结果为阳性的概率为()A.0.0689 B.0.049C.0.0248 D.0.0212.已知是双曲线:的右焦点,是坐标原点,过作的一条渐近线的垂线,垂足为,并交轴于点.若,则的离心率为()A. B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.数列中,,则______14.下列命题:①若,则;②“在中,若,则”逆命题是真命题;③命题“,”的否定是“,”;④“若,则”的否命题为“若,则”.则其中正确的是______.15.设空间向量,且,则___________.16.已知数列中,,,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线方程为(1)若直线的倾斜角为,求的值;(2)若直线分别与轴、轴的负半轴交于、两点,为坐标原点,求面积的最小值及此时直线的方程18.(12分)如图,在直三棱柱中,,,,点是的中点.(1)求证:;(2)求证:平面.19.(12分)已知椭圆的左右焦点分别为,,经过左焦点的直线与椭圆交于A,B两点(异于左右顶点)(1)求△的周长;(2)求椭圆E上的点到直线距离的最大值20.(12分)已知函数,其中为实数.(1)若函数的图像在处的切线与直线平行,求函数的解析式;(2)若,求在上的最大值和最小值.21.(12分)求适合下列条件的双曲线的标准方程:(1)焦点坐标为,且经过点;(2)焦点在坐标轴上,经过点.22.(10分)在平面直角坐标系中,已知抛物线的焦点与椭圆的右焦点重合(1)求椭圆的离心率;(2)求抛物线的方程;(3)设是抛物线上一点,且,求点的坐标

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】利用函数在递减求解.【题目详解】因为函数在递减,又实数是函数的零点,即,又因为,所以,故选:A2、A【解题分析】设的延长线交的延长线于点,由椭圆性质推导出,由题意知是△的中位线,从而得到点的轨迹是以为圆心,以为半径的圆【题目详解】是焦点为、的椭圆上一点为的外角平分线,,设的延长线交的延长线于点,如图,,,,由题意知是△的中位线,,点的轨迹是以为圆心,以为半径的圆故选:A3、C【解题分析】根据已知分析数列周期性,可得答案【题目详解】解:∵数列满足,,∴,,,,故数列以4为周期呈现周期性变化,由,故,故选C【题目点拨】本题考查的知识点是数列的递推公式,数列的周期性,难度中档4、A【解题分析】利用两直线垂直斜率关系,即可求解.【题目详解】直线l1:y=x+2与l2:2ax+y﹣1=0垂直,.故选:A【题目点拨】本题考查两直线垂直间的关系,属于基础题.5、B【解题分析】将样本中的数据由小到大进行排列,利用中位数的定义可得结果.【题目详解】将样本中的数据由小到大进行排列,依次为:、、、、、、、、、,因此,这组数据的中位数为.故选:B.6、A【解题分析】根据导数得出在的单调性,进而由单调性得出大小关系.【题目详解】因为,所以在上单调递增.因为,所以,而,所以.因为,且,所以.即.故选:A7、C【解题分析】集合M={0,x},N={1,2},若M∩N={2},则.所以.故选C.点睛:集合的交集即为由两个集合的公共元素组成的集合,集合的并集即由两集合的所有元素组成.8、C【解题分析】由递推公式可归纳得,由此可以求出的值【题目详解】因为,,所以,,,因此故选C【题目点拨】本题主要考查利用数列的递推式求值和归纳推理思想的应用,意在考查学生合情推理的意识和数学建模能力9、C【解题分析】根据给定条件利用分层抽样的抽样比直接计算作答.【题目详解】依题意,三年级学生的总人数为,从1500人中用分层随机抽样抽取容量为300的样本的抽样比为,所以应抽取的三年级学生的人数为.故选:C10、C【解题分析】点在平面内的射影是坐标不变,坐标为0的点.【题目详解】点在坐标平面内的射影为,故点M的坐标是故选:C11、C【解题分析】根据全概率公式即可求出【题目详解】随机抽取一人进行验血,则其验血结果为阳性的概率为0.0248故选:C12、A【解题分析】由条件建立a,b,c的关系,由此可求离心率的值.【题目详解】设,则,∵,∴,∴,∴,∴,∴,∴离心率,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】根据可得,则,所以可得数列是以6为周期周期数列,再由计算出的值,再利用对数的运算性质可求得结果【题目详解】因为,所以,所以,所以数列是以6为周期的周期数列,因为,,所以,所以,所以所以,故答案为:114、②③④【解题分析】根据不等式的性质,正弦定理与四种命题的概念,命题的否定,判断各命题【题目详解】①,满足,但,①错;②在中,由正弦定理,因此其逆命题也是真命题,②正确;③存在命题的否定是全称命题,命题“,”的否定是“,”,③正确;④由否命题的概念,“若,则”的否命题为“若,则”,④正确故答案为:②③④15、1【解题分析】根据,由求解.【题目详解】因为向量,且,所以,即,解得.故答案为:116、【解题分析】根据递推公式一一计算即可;【题目详解】解:因为,所以,,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)面积的最小值为,此时直线的方程为.【解题分析】(1)由直线的斜率和倾斜角的关系可求得的值;(2)求出点、的坐标,根据已知条件求出的取值范围,求出的面积关于的表达式,利用基本不等式可求得面积的最小值,利用等号成立的条件可求得的值,即可得出直线的方程.【小问1详解】解:由题意可得.【小问2详解】解:在直线的方程中,令可得,即点,令可得,即点,由已知可得,解得,所以,,当且仅当时,等号成立,此时直线的方程为,即.18、(1)证明见解析;(2)证明见解析.【解题分析】(1)由直棱柱的性质可得,由勾股定理可得,由线面垂直判定定理即可得结果;(2)取的中点,连结和,通过线线平行得到面面,进而得结果.【题目详解】(1)∵直三棱柱,∴面,∴,又∵,,,∴,∴,∵,∴面,∴(2)取的中点,连结和,∵,且,∴四边形为平行四边形,∴,面,∴面,∵,且,∴四边形平行四边形,∴,面,∴面,∵,∴面面,∴平面.【题目点拨】方法点睛:线面平行常见的证明方法:(1)通过构造相似三角形(三角形中位线),得到线线平行;(2)通过构造平行四边形得到线线平行;(3)通过线面平行得到面面平行,再得线面平行.19、(1);(2).【解题分析】(1)利用椭圆的定义求△的周长;(2)设直线与椭圆相切,联立方程求参数m,与之间的距离的最大值,即为椭圆E上的点到直线l距离的最大值.【小问1详解】已知椭圆E方程为,所以,△的周长为,其中,所以△的周长为.【小问2详解】设直线与直线l平行且与椭圆相切,则,得,即,令,解得,所以,与之间的距离,即椭圆E上的点到直线l距离的最大值为20、(1)(2),【解题分析】(1)根据平行关系得到切线斜率,进而得到导函数在处的函数值,列出方程,求出,进而得到函数解析式;(2)先由求出,再利用导函数求单调性和最值.【小问1详解】,.由题意得:,解得:.,【小问2详解】,则,解得,,,当,解得:,即函数在单调递减,当,解得:或,即函数分别在,递增.又,,,,,.21、(1);(2).【解题分析】(1)利用双曲线定义求出双曲线的实轴长即可计算作答.(2)设出双曲线的方程,利用待定系数法求解作答.【小问1详解】因双曲线的焦点坐标为,且经过点,令双曲线实半轴长为a,则有,解得,双曲线半焦距,虚半

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论