版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(清华附中考题)
10名同学参加数学竞赛,前4名同学平均得分150分,后6名同学平均得分比10人的平均分少20分,这10名同学的平均分是________分.
2(西城实验考题)
某文具店用16000元购进4种练习本共6400本。每本的单价是:甲种4元,乙种3元,丙种2元,丁种1.4元。如果甲、丙两种本数相同,乙、丁两种本数也相同,那麽丁种练习本共买了_________本。3(人大附中考题)
某商店想进饼干和巧克力共444千克,后又调整了进货量,使饼干增加了20千克,巧克力减少5%,结果总数增加了7千克。那么实际进饼干多少千克?
4(北大附中考题)
六年级某班学生中有1/16的学生年龄为13岁,有3/4的学生年龄为12岁,其余学生年龄为11岁,这个班学生的平均年龄是_________岁。5(西城外国语考题)
某个五位数加上20万并且3倍以后,其结果正好与该五位数的右端增加一个数字2的得数相等,这个五位数是__________。
6(北京二中题)
某自来水公司水费计算办法如下:若每户每月用水不超过5立方米,则每立方米收费1.5元,若每户每月用水超过5立方米,则超出部分每立方米收取较高的定额费用,1月份,张家用水量是李家用水量的,张家当月水费是17.5元,李家当月水费27.5元,超出5立方米的部分每立方米收费多少元?计数篇
1(人大附中考题)
用1~9可以组成______个不含重复数字的三位数:如果再要求这三个数字中任何两个的差不能是1,那么可以组成______个满足要求的三位数.2(首师附中考题)
有甲、乙、丙三种商品,买甲3件,乙7件,丙1件,共需32元,买甲4件,乙10件,丙1件,共需43元,则甲、乙、丙各买1件需________元钱?
3(三帆中学考题)
某小学有一支乒乓球队,有男、女小队员各8名,在进行男女混合双打时,这16名小队员可组成__对不同的阵容.预测
有10个箱子,编号为1,2,…,10,各配一把钥匙,10把各不相同,每个箱子放进一把钥匙锁好,先撬开1,2号箱子,取出钥匙去开别的箱子,如果最终能把所有箱子的锁都打开,则说是一种好的放钥匙的方法。求好的方法的总数。
1(清华附中考题)
【解】:设10人的平均分为a分,这样后6名同学的平均分为a-20分,所以列方程:
[10a-6×(a-20)]÷4=150解得:a=120。2(西城实验考题)
【解】:设甲、丙数目各为a,那么乙、丁数目为(6400-2a)/2,所以列方程
4a+3×(6400-2a)/2+2a+1.4×(6400-2a)/2=16000解得:a=1200。3(人大附中考题)
【解】:设饼干为a,则巧克力为444-a,列方程:
a+20+(444-a)×(1+5%)-444=7解得:a=184。4(北大附中考题)
【解】:因为是填空题,所以我们直接设这个班有16人,计算比较快。所以题目变成了:1个学生年龄为13岁,有12个学生年龄为12岁,3个学生学生年龄为11岁,求平均年龄?
(13×1+12×12+11×3)÷16=11.875,即平均年龄为11.875岁。
如果是需要写过程的解答题,则可以设这个班的人数为a,则平均年龄为:
=11.875。
5(西城外国语考题)
【解】:设这个五位数为x,则由条件(x+200000)×3=10x+2,解得x=85714。
6(北京二中题)【解】:设出5立方米的部分每立方米收费X,
(17.5-5×1.5)÷X+5=[(27.5-5×1.5)÷X+5]×(2/3)解得:X=2。计数篇
1(人大附中考题)
【解】1)9×8×7=504个
2)504-(6+5+5+5+5+5+5+6)×6-7×6=210个
(减去有2个数字差是1的情况,括号里8个数分别表示这2个数是12,23,34,45,56,67,78,89的情况,×6是对3个数字全排列,7×6是三个数连续的123234345456567789这7种情况)2(首师附中考题)
【解】:3甲+7乙+丙=32
4甲+10乙+丙=43
组合上面式子,可以得到:甲+3乙=11,可见:甲+乙+丙=4甲+10乙+丙-3甲-9乙=43-3×11=10。3(三帆中学考题)
【解】先把男生排列起来,这就有了顺序的依据,那么有8名女生全排列为8!=40320.
预测【解】:设第1,2,3,…,10号箱子中所放的钥匙号码依次为k1,k2,k3,…,k10。当箱子数为n(n≥2)时,好的放法的总数为an。
当n=2时,显然a2=2(k1=1,k2=2或k1=2,k2=1)。
当n=3时,显然k3≠3,否则第3个箱子打不开,从而k1=3或k2=3,于是n=2时的每一组解对应n=3的2组解,这样就有a3=2a2=4。
当n=4时,也一定有k4≠4,否则第4个箱子打不开,从而k1=4或k2=4或k3=4,于是n=3时的每一组解,对应n=4时的3组解,这样就有a4=3a3=12。
依次类推,有
a10=9a9=9×8a8=…
=9×8×7×6×5×4×3×2a2
=2×9!=725760。
即好的方法总数为725760。工程问题
1(三帆中学考题)
原计划18个人植树,按计划工作了2小时后,有3个人被抽走了,于是剩下的人每小时比原计划多种1棵树,还是按期完成了任务.原计划每人每小时植______棵树.
2(首师附中考题)
一项工程,甲做10天乙20天完成,甲15天乙12也能完成。现乙先做4天,问甲还要多少天完成?
3(人大附中考题)
一部书稿,甲单独打字要14小时完成,乙单独打字要20小时完成。如果先由甲打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时,……两人如此交替工作。那么,打完这部书稿时,甲、乙二人共用了多少小时?
4(西城四中考题)
如果用甲、乙、丙三那根水管同时在一个空水池里灌水,1小时可以灌满;如果用甲、乙两管,1小时20分钟可以灌满;如果用乙、丙两根水管,1小时15分钟可以灌满,那么,用乙管单独灌水的话,灌满这一池的水需要______小时。预测
有A,B两堆同样多的煤,如果只装运一堆煤,那么甲车需要20时,乙车需要24时,丙车需要30时。现在甲车装运A堆煤,乙车装运B堆煤,丙车开始先装运A堆煤,中途转向装运B堆煤,三车同时开始,同时结束装完这两堆煤。丙车装运A堆煤用了多少时间?
预测
单独完成一件工程,甲需要24天,乙需要32天。若甲先做若干天以后乙接着做,则共用26天时间,问:甲独做了几天?
预测
某水池有甲、乙、丙3个放水管,每小时甲能放水100升,乙能放水125升。现在先使用甲放水,2小时后,又开始使用乙管,一段时间后再开丙管,让甲、乙、丙3管同时放水,直到把水放完。计算甲、乙、丙管的放水量,发现它
们恰好相等。那么水池中原有多少水?
数论篇一
1(人大附中考题)
有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。
2(101中学考题)
如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数
是__。
3(人大附中考题)
甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。
4(人大附中考题)
下列数不是八进制数的是()
A、125B、126C、127D、128预测
1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?
预测
2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。2004年元旦三个网站同时更新,下一次同时更新是在____月____日?
预测
3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是______.数论篇二
1(清华附中考题)
有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.
2(三帆中学考题)
140,225,293被某大于1的自然数除,所得余数都相同。2002除以这个自然数的余数是.
3(人大附中考题)
某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.
4(101中学考题)
一个八位数,它被3除余1,被4除余2,被11恰好整除,已知这个八位数的前6位是257633,那么它的后两位数字是__________。
5(实验中学考题)
(1)从1到3998这3998个自然数中,有多少个能被4整除?
(2)从1到3998这3998个自然数中,有多少个各位数字之和能被4整除?预测
1.如果1=1!,1×2=2!,1×2×3=3!……1×2×3×……×99×100=100!那么1!+2!+3!+……+100!的个位数字是多少?
预测
2.(★★★★)公共汽车票的号码是一个六位数,若一张车票的号码的前3个数字之和等于后3个数字之和,则称这张车票是幸运的。试说明,所有幸运车票号码的和能被13整除。工程问题
1(三帆中学考题)
【解】:3人被抽走后,剩下15人都多植树1棵,这样每小时都总共多植树15棵树,因为还是按期完成任务,所以这15棵树肯定是3人原来要种的,所以原来每人要植树15÷3=5棵。2(首师附中考题)
【解】:甲10天+乙20天=1;甲15天+乙12天=1,所以工作量:甲10天+乙20天=甲15天+乙12天,等式两端消去相等的工作量得:乙8天=甲5天,即乙工作8天的工作量让甲去做只要5天就能完成,那么整个工程全让甲做要15+12×=22.5天。现在乙了4天就相当于甲做了4×=2.5天,所以甲还要做20天。3(人大附中考题)
【解】:甲的工作效率=,乙的工作效率=,合作工效=,甲乙交替工作相当于甲乙一起合作1小时,这样1÷==8…,所以合作了8小时,这样还剩下就是甲做的,所以甲还要做÷=3,所以两人总共作了8+8+小时。4(西城四中考题)【解】:方法一:(编者推荐用法)甲、乙、丙60分钟可以灌满,甲、乙两管80分钟可以灌满,乙、丙两根水管75分钟可以灌满;这样我们先找出60、80、75的最小公倍数,即1200,所以我们假设水池总共有1200份,这样甲、乙、丙每分钟灌1200÷60=20份,甲、乙每分钟灌1200÷80=15份,乙、丙每分钟灌1200÷75=16份,所以乙每分钟灌15+16-20=11份,这样乙单独灌水要1200÷11=分钟。
方法二:设工作效率求解,省略。5(北大附中考题)【解】:假设每个工人每小时做一份,这样总工程量=15×4×18=1080份,增加3人每天增加
1小时,那么需要的时间=1080÷(15+3)÷(4+1)=12天,所以提前6天完成。数论篇一
1(人大附中考题)
【解】:6
2(101中学考题)
【解】:设原来数为ab,这样后来的数为a0b,把数字展开我们可得:100a+b=9×(10a+b),所以我们可以知道5a=4b,所以a=4,b=5,所以原来的两位数为45。3(人大附中考题)
甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。
【解】:题中要求丙与135的乘积为甲的平方数,而且是个偶数(乙+乙),这样我们分解135=5×3×3×3,所以丙最小应该是2×2×5×3,所以甲最小是:2×3×3×5=90。4(人大附中考题)
【解】:八进制数是由除以8的余数得来的,不可能出现8,所以答案是D。
数论篇二
1(清华附中考题)
【解】:处理成余数相同的,则888、518-7、666-10的余数相同,这样我们可以转化成同余问题。这样我们用总结的知识点可知:任意两数的差肯定余0。那么这个自然数是888-511=377的约数,又是888-656=232的约数,也是656-511=145的约数,因此就是377、232、145的公约数,所以这个自然数是29。2(三帆中学考题)
【解】:这样我们用总结的知识点可知:任意两数的差肯定余0。那么这个自然数是293-225=68的约数,又是225-140=85的约数,因此就是68、85的公约数,所以这个自然数是17。所以2002除以17余13(人大附中考题)
【解】:“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
4(101中学考题)
【解】:设后面这个两位数为ab,前面数字和为26除以3余2,所以补上的两位数数字和要除以3余2。同理要满足除以4余2;八位数中奇数位数字和为(2+7+3+a),偶数位数字和为(5+6+3+b)这样要求a=b+2,所以满足条件的只有86
5(实验中学考题)
【解】1、[]=999个。
2、对于每一个三位数×××来说,在1×××、2×××、3×××和4×××这4个数中恰好有1个数的数字和能被4整除.所以从1000到4999这4000个数中,恰有1000个数的数字和能被4整除.
同样道理,我们可以知道600到999这400个数中恰有100个数的数字和能被4整除,从200到599这400个数中恰有100个数的数字和能被4整除.
现在只剩下10到199这190个数了.我们还用一样的办法.160到199这40个数中,120到159这40个数中,60到88这40个数中,以及20到59这40个数中分别有10个数的数字和能被4整除.而10到19,以及100到1t9中则只有13、17、103、107、112和116这6个数的数字和能被4整除.
所以从10到4999这4990个自然数中,其数字和能被4整除的数有1000+100×2+10×4+6=1246个.[方法二]:
解:第一个能数字和能够被4整除的数是13,最后一个是4996,这中间每4位数就有一个能够满足条件,所以4996-13=4983,4983÷4=1245(个),而第一个也是能够满足的,所以正确答案是
1245+1=1246(人)或者就直接用4996-12=4984,用4984÷4=1246(个)
[拓展]:1到9999的数码和是等于多少?1,(人大附中考题)
ABCD是一个边长为6米的正方形模拟跑道,甲玩具车从A出发顺时针行进,速度是每秒5厘米,乙玩具车从CD的中点出发逆时针行进,结果两车第二次相遇恰好是在B点,求乙车每秒走多少厘米?
2,(清华附中考题)
已知甲车速度为每小时90千米,乙车速度为每小时60千米,甲乙两车分别从A,B两地同时出发相向而行,在途径C地时乙车比甲车早到10分钟;第二天甲乙分别从B,A两地出发同时返回原来出发地,在途径C地时甲车比乙车早到1个半小时,那么AB距离时多少?
3(十一中学考题)
甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。甲、丙从某长街的西头、乙从该长街的东头同时出发相向而行,甲、乙相遇后恰好4分钟乙、丙相遇,那麽这条长街的长度是?米.
4(西城实验考题)
甲乙两人在A、B两地间往返散步,甲从A、乙从B同时出发;第一次相遇点距B处60米。当乙从A处返回时走了lO米第二次与甲相遇。A、B相距多少米?
5(首师大附考题)
甲,乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次?
6(清华附中考题)
从一个长为8厘米,宽为7厘米,高为6厘米的长方体中截下一个最大的正方体,剩下的几何体的表面积是_________平方厘米.
7(三帆中学考试题)
有一个棱长为1米的立方体,沿长、宽、高分别切二刀、三刀、四刀后,成为60个小长方体这60个小长方体的表面积总和是______平方米
8(首师附中考题)
一千个体积为1立方厘米的小正方体合在一起成为一个边长为10厘米的大正方体,大正方体表面涂油漆后再分开为原来的小正方体,这些小正方体至少有一面被油漆涂过的数目是多少个?
9(清华附中考题)
大货车和小轿车从同一地点出发沿同一公路行驶,大货车先走1.5小时,小轿车出发后4小时后追上了大货车.如果小轿车每小时多行5千米,那么出发后3小时就追上了大货车.问:小轿车实际上每小时行多少千米?
10(西城实验考题)
小强骑自行车从家到学校去,平常只用20分钟。由于途中有2千米正在修路,只好推车步行,步行速度只有骑车的1/3,结果用了36分钟才到学校。小强家到学校有多少千米?
11(101中学考题)
小灵通和爷爷同时从这里出发回家,小灵通步行回去,爷爷在前4/7的路程中乘车,车速是小灵通步行速度的10倍.其余路程爷爷走回去,爷爷步行的速度只有小灵通步行速度的一半,您猜一猜咱们爷孙俩谁先到家?
12(三帆中学考题)
客车和货车同时从甲、乙两城之间的中点向相反的方向相反的方向行驶,3小时后,客车到达甲城,货车离乙城还有30千米.已知货车的速度是客车的3/4,甲、乙两城相距多少千米?
13(人大附中考题)
小明跑步速度是步行速度的3倍,他每天从家到学校都是步行。有一天由于晚出发10分钟,他不得不跑步行了一半路程,另一半路程步行,这样与平时到达学校的时间一样。那么小明每天步行上学需要时间多少分钟?
14(清华附中考题)
如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分
组的情况是什么?
15(三帆中学考题)
观察1+3=4;4+5=9;9+7=16;16+9=25;25+11=36这五道算式,找出规律,
然后填写2001+()=2002
16(06年东城二中考题)
在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少?
17(人大附中考题)
请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。为了达到这些目的。
(1)请你说明:11这个数必须选出来;
(2)请你说明:37和73这两个数当中至少要选出一个;
(3)你能选出55个数满足要求吗?
预测题1
如数表:
第1行123…1415
第2行302928…1716
第3行313233…4445
……
第n行…………A………………
第n+1行…………B………………
第n行有一个数A,它的下一行(第n+1行)有一个数B,且A和B在同一竖列。如果A+B=391,那么n=_______。
【来源】1995年小学数学奥林匹克初赛A卷第7题、B卷第9题
预测题2
在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次,如果两人速度不变,其中一人改成按逆时针方向跑,每隔4分钟相遇一次,问两人各跑一圈需要几分钟?
预测题3
小马虎上学忘了带书包,爸爸发现后立即骑车去追,把书包交给他后立即返回家。小马虎接到书包后又走了10分钟到达学校,这时爸爸也正好到家。如果爸爸的速度是小马虎速度的4倍,那么小马虎从家到学校共用多少时间?
1,(人大附中考题)
【解】两车第2次相遇的时候,甲走的距离为6×5=30米,乙走的距离为6×5+3=33米
所以两车速度比为10:11。因为甲每秒走5厘米,所以乙每秒走5.5厘米。
2,(清华附中考题)
【解】:画图可知某一个人到C点时间内,第一次甲走的和第二次甲走的路程和为一个全程还差90×10/60=15千米,第一次乙走的和第二次乙走的路程和为一个全程还差60×1.5=90千米。而速度比为3:2;这样我们可以知道甲走的路程就是:(90-15)÷(3-2)×3=215,所以全程就是215+15=230千米。3(十一中学考题)
【解】:甲、乙相遇后4分钟乙、丙相遇,说明甲、乙相遇时乙、丙还差4分钟的路程,即还差4×(75+60)=540米;而这540米也是甲、乙相遇时间里甲、丙的路程差,所以甲、乙相遇=540÷(90-60)=18分钟,所以长街长=18×(90+75)=2970米。4(西城实验考题)
【解】:“第一次相遇点距B处60米”意味着乙走了60米和甲相遇,根据总结,两次相遇两人总共走了3个全程,一个全程里乙走了60,则三个全程里乙走了3×60=180米,第二次相遇是距A地10米。画图我们可以发现乙走的路程是一个全程多了10米,所以A、B相距=180-10=170米。5(首师大附考题)
【解】10分钟两人共跑了(3+2)×60×10=3000米3000÷100=30个全程。
我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1、3、5、7。。。29共15次。6(清华附中考题)
【解】最大正方体的边长为6,这样剩下表面积就是少了两个面积为6×6的,所以现在的面积为(8×7+8×6+7×6)×2-6×6×2=220.7(三帆中学考试题)
【解】原正方体表面积:1×1×6=6(平方米),一共切了2+3+4=9(次),每切一次增加2个面:2平方米。所以表面积:6+2×9=24(平方米).8(首师附中考题)
【解】共有10×10×10=1000个小正方体,其中没有涂色的为(10-2)×(10-2)×(10-2)=512个,所以至少有一面被油漆漆过的小正方体为1000-512=488个。9(清华附中考题)
【解】根据追及问题的总结可知:4速度差=1.5大货车;3(速度差+5)=1.5大货车,所以速度差=15,所以大货车的速度为60千米每小时,所以小轿车速度=75千米每小时。
10(西城实验考题)
【解】小强比平时多用了16分钟,步行速度:骑车速度=1/3:1=1:3,那么在2千米中,时间比=3:1,所以步行多用了2份时间,所以1份就是16÷2=8分钟,那么原来走2千米骑车8分钟,所以20分钟的骑车路程就是家到学校的路程=2×20÷8=5千米。11(101中学考题)
【解】不妨设爷爷步行的速度为“1”,则小灵通步行的速度为“2”,车速则为“20”.到家需走的路程为“1”.有小灵通到家所需时间为1÷2=0.5,爷爷到家所需时间为4/7÷20+3/7÷1=16/35.16/35<0.5,所以爷爷先到家12(三帆中学考题)
【解】客车速度:货车速度=4:3,那么同样时间里路程比=4:3,也就是说客车比货车多行了1份,多30千米;所以客车走了30×4=120千米,所以两城相距120×2=240千米。13(人大附中考题)
【解】后一半路程和原来的时间相等,这样前面一半的路程中现在的速度比=3:1,
所以时间比=1:3,也就是节省了2份时间就是10分钟,所以原来走路的时间就是10÷2×3=15分钟,所以总共是30分钟。14(清华附中考题)
【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、143。15(三帆中学考题)
【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……,所以下面括号中填的数字为奇数列中的第2001个,即4003。16(东城二中考题)
【解】:第一次写后和增加5,第二次写后的和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,……
它们的差依次为5、15、45、135、405……为等比数列,公比为3。
它们的和为5+15+45+135+405+1215=1820,所以第六次后,和为1820+2+3=1825。17(人大附中考题)
【解】(1),11,22,33,…99,这就9个数都是必选的,因为如果组成这个无穷长数的就是1~9某个单一的数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选。
(2),比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必须选出一个来。
(3),同37的例子,
01和10必选其一,02和20必选其一,……09和90必选其一,选出9个
12和21必选其一,13和31必选其一,……19和91必选其一,选出8个。
23和32必选其一,24和42必选其一,……29和92必选其一,选出7个。
………
89和98必选其一,选出1个。
如果我们只选两个中的小数这样将会选出9+8+7+6+5+4+3+2+1=45个。再加上11~99这9个数就是54个。
预测题1
解】相邻两行,同一列的两个数的和都等于第一列的两个数的和,而从第1行开始,相邻两行第一列的两个数的和依次是
31,61,91,121,…。(*)
每项比前一项多30,因此391是(*)中的第(391—31)÷30+1=13个数,即n=13.找规律篇
1(西城实验考题)有一批长度分别为1,2,3,4,5,6,7,8,9,10和11厘米的细木条,它们的数量都足够多,从中适当选取3根木条作为三条边,可围成一个三角形;如果规定底边是11厘米,你能围成多少个不同的三角形?
2(三帆中学考题)有7双白手套,8双黑手套,9双红手套放在一只袋子里。一位小朋友在黑暗中从袋中摸取手套,每次摸一只,但无法看清颜色,为了确保能摸到至少6双手套,他最少要摸出手套(
)只。(手套不分左、右手,任意二只可成一双)。
3(人大附中考题)某次中外公司谈判会议开始10分钟听到挂钟打钟(只有整点时打钟,几点钟就响几下),整个会议当中共听到14下钟声,会议结束时,时针和分针恰好成90度角,求会议开始的时间结束的时间及各是什么时刻。
4(101中学考题)4道单项选择题,每题都有A、B、C、D四个选项,其中每题只有一个选项是正确的,有800名学生做这四道题,至少有_________人的答题结果是完全一样的?
5(三帆中学考题)设有十个人各拿着一只提桶同时到水龙头前打水,设水龙头注满第一个人的桶需要1分钟,注满第二个人的桶需要2分钟,…….如此下去,当只有两个水龙头时,巧妙安排这十个人打水,使他们总的费时时间最少.这时间等于_________分钟.
预测1在右图的方格表中,每次给同一行或同一列的两个数加1,经过若干次后,能否使表中的四个数同时都是5的倍数?为什么?1
24
3预测2
甲、乙两厂生产同一规格的上衣和裤子,甲厂每月用16天生产上衣,14天做裤子,共生产448套衣服(每套上衣、裤子各一件);乙厂每月用12天生产上衣,18天生产裤子,共生产720套衣服。两厂合并后,每月(按30天计算)最多能生产多少套衣服?比例百分数篇1(清华附中考题)甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价,后来都按定价的90%打折出售,结果仍获利131元,甲商品的成本是________元.
2(101中学考题)100千克刚采下的鲜蘑菇含水量为99%,稍微晾晒后,含水量下降到98%,那么这100千克的蘑菇现在还有多少千克呢?
3(实验中学考题)有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是________升。
4(三帆中学考题)有甲、乙两堆煤,如果从甲堆运12吨给乙堆,那么两堆煤就一样重。如果从乙堆运12吨给甲堆,那么甲堆煤就是乙堆煤的2倍。这两堆煤共重(
)吨。
5(人大附中考题)一堆围棋子黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为2:1;再拿走45枚黑棋子后,黑子与白子的个数比为1:5,开始时黑棋子,求白棋子各有多少枚?
预测1某中学,上年度高中男、女生共290人.这一年度高中男生增加4%,女生增加5%,共增加13人.本年度该校有男、女生各多少人?
预测2袋子里红球与白球数量之比是19:13。放入若干只红球后,红球与数量之比变为5:3;再放入若干只白球后,红球与白球数量之比变为13:11。已知放入的红球比白球少80只,那么原先袋子里共有多少只球?1
(西城实验考题)
【解】由于数量足够多,所以考虑重复情况;现在底边是11,我们要保证的是两边之和大于第三边,这样我们要取出的数字和大于11.情况如下:
一边长度取11,另一边可能取1~11总共11种情况;
一边长度取10,另一边可能取2~10总共9种情况;
…
…
一边长度取6,另一边只能取6总共1种;
下面边长比6小的情况都和前面的重复,所以总共有1+3+5+7+9+11=36种。
2
(三帆中学考题)
【解】考虑运气最背情况,这样我们只能是取了前面5双颜色相同的后再取三只颜色不同的,如果再取一只,那么这只的颜色必和刚才三只中的一只颜色相同故我们至少要取5×2+3+1=14只。
3(人大附中考题)
【解】因为几点钟响几下,所以14=2+3+4+5,所以响的是2、3、4、5点,那么开始后10分钟才响就是说开始时间为1点50分。结束时,时针和分针恰好成90度角,所以可以理解为5点过几分钟时针和分针成90度角,这样我们算出答案为10÷11/12=1010/11分钟,所以结束时间是5点1010/11分钟。
(可以考虑还有一种情况,即分针超过时针成90度角,时间就是40÷11/12)
4
(101中学考题)
【解】:因为每个题有4种可能的答案,所以4道题共有4×4×4×4=256种不同的答案,由抽屉原理知至少有:[799/256]+1=4人的答题结果是完全一样的.
5
(三帆中学考题)
【解】不难得知应先安排所需时间较短的人打水.
不妨假设为:
第一个水龙头
第二个水龙头
第一个
A
F
第二个
B
G
第三个
C
H
第四个
D
I
第五个
E
J
显然计算总时间时,A、F计算了5次,B、G计算了4次,C、H计算了3次,D、I计算了2次,E、J计算了1次.
那么A、F为1、2,B、G为3、4,C、H为5、6,D、I为7、8,E、J为9、10.
所以有最短时间为(1+2)×5+(3+4)×4+(5+6)×3+(7+8)×2+(9+10)×1=125分钟.
评注:下面给出一排队方式:
第一个水龙头
第二个水龙头
第一个
1
2
第二个
3
4
第三个
5
6
第四个
7
8
第五个
9
10
预测1
【解】:要使第一列的两个数1,4都变成5的倍数,第一行应比第二行多变(3+5n)次;要使第二列的两个数2,3都变成5的倍数,第一行应比第二行多变(1+5m)次。
因为(3+5n)除以5余3,(1+5m)除以5余1,所以上述两个结论矛盾,不能同时实现。注:m,n可以是0或负数。
预测2
【解】:应让善于生产上衣或裤子的厂充分发挥特长。甲厂生产上衣和裤子的时间比为8∶7,乙厂为2∶3,可见甲厂善于生产裤子,乙厂善于生产上衣。
因为甲厂30天可生产裤子448÷14×30=960(条),乙厂30天可生产上衣720÷12×30=1800(件),960<1800,所以甲厂应专门生产裤子,剩下的衣裤由乙厂生产。
设乙厂用x天生产裤子,用(30-x)天生产上衣。由甲、乙两厂生产的上衣与裤子一样多,可得方程
960+720÷18×x=720÷12×(30-x),
960+40x=1800-60x,
100x=840,
x=8.4(天)。
两厂合并后每月最多可生产衣服
960+40×8.4=1296(套)。
比例百分数篇
1
(清华附中考题)
【解】:设方程:设甲成本为X元,则乙为2200-X元。根据条件我们可以求出列出方程:90%×[(1+20%)X+(1+15%)(2200-X)]-2200=131。解得X=1200。
2
(101中学考题)
【解】:转化成浓度问题
相当于蒸发问题,所以水不变,列方程得:100×(1-99%)=(1-98%)X,解得X=50。
方法二:做蒸发的题目,要改变思考角度,本题就应该考虑成“98%的干蘑菇加水后得到99%的湿蘑菇”,这样求出加入多少水份即为蒸发掉的水份,就又转变成“混合配比”的问题了。但要注意,10千克的标注应该是含水量为99%的重量。将100千克按1∶1分配,
所以蒸发了100×1/2=50升水。
3(实验中学考题)
【解】此题的关键是抓住不变量:差不变。这样原来两桶水差13-8=5升,往两个桶中加进同样多的水后,后来还是差5升,所以后来一桶为5÷(7-5)×5=12.5,所以加入水量为4.5升。
4
(三帆中学考题)
【解】从甲堆运12吨给乙堆两堆煤就一样重说明甲堆比乙堆原来重12×2=24吨,这样乙堆运12吨给甲堆,说明现在甲乙相差就是24+24=48吨,而甲堆煤就是乙堆煤的2倍,说明相差1份,所以现在甲重48×2=96吨,总共重量为48×3=144吨。
5(人大附中考题)
【解】第二次拿走45枚黑棋,黑子与白子的个数之比由2:1(=10:5)变为1:5,而其
中白棋的数目是不变的,这样我们就知道白棋由原来的10份变成现在的1份,减少了9份。
这样原来黑棋=45÷9×10=50,白棋=45÷9×5+15=40。
预测1
【解】男生156人,女生147人。
如果女生也是增加4%,这样增加的人数是290×4%=11.6(人).比13人少1.4人.因此上年度是1.4÷(5%-4%)=140(人).本年度女生有140×(1+5%)=147(人).
预测2
【解】放入若干只红球前后比较,那白球的数量不变,也就是后项不变;再把放入若干只白球的前后比较,红球的数量不变,因此可以根据两次变化前后的不变量来统一,然后比较。
红
白
原来
19
:13=57:39
加红
5
:3=65:39
加白
13
:11=65:55
原来与加红球后的后项统一为3与13的最小公倍数为39,再把加红与加白的前项统一为65
与13的最小公倍数65。观察比较得出加红球从57份变为65份,共多了8份,加白球从39份变为55份,共多了16份,可见红球比白球少加了8份,也就是少加了80只,每份为10只,总数为(57+39)×10=960只。1(首师附中考题)
A、B、C、D、E、F六人赛棋,采用单循环制。现在知道:A、B、C、D、E五人已经分别赛过5.4、3、2、l盘。问:这时F已赛过
盘。
2
(三帆中学考题)
甲、乙、丙三人比赛象棋,每两人赛一盘.胜一盘得2分.平一盘得1分,输一盘得0分.比赛的全部三盘下完后,只出现一盘平局.并且甲得3分,乙得2分,丙得1分.那么,甲
乙,
甲
丙,乙
丙(填胜、平、负)。
3(西城实验考题)
A、B、C、D、E、F六个选手进行乒乓球单打的单循环比赛(每人都与其它选手赛一场),每天同时在三张球台各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C,问:第五天A与谁对阵?另外两张球台上是谁与谁对阵?
4
(人大附中考题)
一个岛上有两种人:一种人总说真话的骑士,另一种是总是说假话的骗子。一天,岛上的2003个人举行一次集会,并随机地坐成一圈,他们每人都声明:“我左右的两个邻居是骗子。”第二天,会议继续进行,但是一名居民因病未到会,参加会议的2002个人再次随机地坐成一圈,每人都声明:“我左右的两个邻居都是与我不同类的人。”问有病的居民是_________(骑士还是骗子)。
5
(西城实验考题)
某班一次考试有52人参加,共考5个题,每道题做错的人数如下:
题号
1
2
3
4
5
人数
4
6
10
20
39
又知道每人至少做对一道题,做对一道题的有7人,5道题全做对的有6人,做对2道题的人数和3道题的人数一样多,那么做对4道题的有多少人?
预测1
学校新来了一位老师,五个学生分别听到如下的情况:
(1)是一位姓王的中年女老师,教语文课;
(2)是一位姓丁的中年男老师,教数学课;
(3)是一位姓刘的青年男老师,教外语课;
(4)是一位姓李的青年男老师,教数学课;
(5)是一位姓王的老年男老师,教外语课。
他们听到的情况各有一项正确,请问:真实情况如何?
预测2
某次考试,A,B,C,D,E五人的得分是互不相同的整数。
A说:“我得了94分。”
B说:“我在五人中得分最高。”
C说:“我的得分是A和D的平均分。”
D说:“我的得分恰好是五人的平均分。”
E说:“我比C多得2分,在我们五人中是第二名。”
问:这五个人各得多少分?
预测3
A,B,C,D四个队举行足球循环赛(即每两个队都要赛一场),胜一场得3分,平一场得1分,负一场得0分。已知:
(1)比赛结束后四个队的得分都是奇数;
(2)A队总分第一;
(3)B队恰有两场平局,并且其中一场是与C队平局。
问:D队得几分?1(首师附中考题)
【解】单循环制说明每个人都要赛5盘
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 无人机测绘技术在建筑工程测量中的应用
- 石河子大学《智能计算系统》2022-2023学年期末试卷
- 石河子大学《虚拟仪器》2021-2022学年第一学期期末试卷
- 婚外情检讨书(合集四篇)
- 石河子大学《外国刑法学原理》2022-2023学年期末试卷
- 石河子大学《入学教育与军事技能》2023-2024学年第一学期期末试卷
- 石河子大学《化工原理实验二》2021-2022学年第一学期期末试卷
- 沈阳理工大学《现代控制理论》2021-2022学年期末试卷
- 沈阳理工大学《汽车设计》2021-2022学年第一学期期末试卷
- 沈阳理工大学《计算机控制系统》2021-2022学年期末试卷
- 第五节 错觉课件
- 2024-2030年中国水煤浆行业发展规模及投资可行性分析报告
- 2024-2030年陕西省煤炭行业市场发展分析及发展前景预测研究报告
- 【课件】Unit+3+SectionB+1a-2b+课件人教版英语七年级上册
- 干部人事档案任前审核登记表范表
- 期中阶段测试卷(六)-2024-2025学年语文三年级上册统编版
- 北京市昌平区2023-2024学年高二上学期期末质量抽测试题 政治 含答案
- 第7课《不甘屈辱奋勇抗争》(第2课时)(教学设计)-部编版道德与法治五年级下册
- 高校实验室安全基础学习通超星期末考试答案章节答案2024年
- 国开2024年《中国法律史》平时作业1-3答案
- 国家电网公司十八项反措
评论
0/150
提交评论