版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
[名校]近10年高考数学-导数大题分析详解题型一:讨论含有参数函数的单调性下面四道题都与lnx、e^x有关,与e^x结合的函数出现的更多一些。①2018全国Ⅰ卷导数题,与lnx相关,解题时首先考虑定义域,而且求导通分后,分子为二次函数,讨论的形式相对多一些,难一些;②2017全国Ⅰ卷导数题,要求学生要会因式分解,然后再讨论参数,之后的讨论与2012年题型相似;③2015全国Ⅱ卷导数题,需合并同类项,由于是证明题,结合区间讨论参数,还可以进行二次求导发现f'(x)为增函数,然后再讨论,更容易处理;④2012新课标,这是全国卷在2010年以来第一次在第一问出现含参数讨论单调性导数题,这道题还算简单,相对容易接受。通过以上分析,我们发现含参数讨论问题更多是与e^x及lnx结合,有分子二次函数型(参考定义域),因式分解型,二次求导型,单根单调型(如④)。希望这样的分析能对高三复习有所帮助,搞定导数第一问就不要漏掉这几种题型。题型二:含参数讨论单调性求极值最值本题型在是在题型一基础上又进一求极值最值,难度又进一步加大。对学生的分类讨论,理解分析能力要求比较高。2017年的两道导数题,如出一辙,同一个模板,对于中等生来讲并不简单,且2卷难度稍微大一点点。2016年导数难度也是比较大,尤其在问法上又不是特别明确,所以,在复习备考时我们应该对含参数讨论求极值最值这样的知识点练习到位,争取在导数的第一问上拿到满分。题型三:直接讨论函数单调性按正常来讲,不含参数讨论函数单调性应该是比较简单,但是如下的五道题并非绝对的送分题。2018年的两道导数题以及2013年导数题均需要二次求导,且2018年两道题需要求最值;2016年导数题及2010年导数题需要因式分解,而2016年导数题需要求最值,且这样的问法,会让很多考生不容易看出是求最值;所以,不含参数的导数题还是比较难的,训练时需要夯实基础,对导数解答题的一条线(①原函数,②导函数(直接看不出来则二阶导)③单调区间④求极值最值)了如指掌。题型四:切线问题对考生来讲,导数题第一问求与切线方程有关问题是最简单的,但是近三年都没有考过。而且2015年的切线题稍微难了一点。导数题第一问备考建议①切线方程相关问题;②结合定义域直接(及含参数)求单调区间;③求极值最值;④求二阶导意识(尤其是带有e^x的函数);⑤加强因式分解,合并同类项能力。千万不要认为对于导数题,很多孩子都可以得4分。仔细分析,并非易事。我们要从学生的角度思考问题,培养孩子做导数题“一条线”能力。全国卷高考导数题型及方法总结*(1)求函数中某参数的值或给定参数的值求导数或切线一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。所以做两个字来概括这一类型题的方法就是:淡定。别人送分,就不要客气。③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。切线要写成一般式。*(2)求函数的单调性或单调区间以及极值点和最值一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。这类问题的方法是:首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。注意:①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。没有注意定义域问题很严重。②分类要准,不要慌张。③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下场。*(3)恒成立或在一定条件下成立时求参数范围这类问题一般都设置在导数题的第三问,也就是最后一问,属于有一定难度的问题。这就需要我们一定的综合能力。不仅要对导数有一定的理解,而且对于一些不等式、函数等的知识要有比较好的掌握。这一类题目不是送分题,属于扣分题,但掌握好了方法,也可以百发百中。方法如下:做这类恒成立类型题目或者一定范围内成立的题目的核心的四个字就是:分离变量。一定要将所求的参数分离出来,否则后患无穷。有些人总是认为不分离变量也可以做。一些简单的题目诚然可以做,但到了真正的难题,分离变量的优势立刻体现,它可以规避掉一些极为繁琐的讨论,只用一些简单的代数变形可以搞定,而不分离变量就要面临着极为麻烦的讨论,不仅浪费时间,而且还容易出差错。所以面对这样的问题,分离变量是首选之法。当然有的题确实不能分离变量,那么这时就需要我们的观察能力,如果还是没有简便方法,那么才会进入到讨论阶段。分离变量后,就要开始求分离后函数的最大或者最小值,那么这里就要重新构建一个函数,接下来的步骤就和(2)中基本相同了。注意:①分离时要注意不等式的方向,必要的时候还是要讨论。②要看清是求分离后函数的最大值还是最小值,否则容易搞错。③分类要结合条件看,不能抛开大前提自己胡搞一套。最后,这类题还需要一定的不等式知识,比如均值不等式,一些高等数学的不等数等等。这就需要我们有足够的知识储备,这样做起这样的题才能更有效率。(4)构造新函数对新函数进行分析这类题目题型看似复杂,但其实就是在上述问题之上多了一个步骤,就是将上述的函数转化为了另一个函数,并没有本质的区别,所以这里不再赘述。(5)零点问题这类题目在选择填空中更容易出现,因为这类问题虽然
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年项目管理与技术顾问协议
- 2024年行政申诉状范本汇编与撰写方法解析3篇
- 2024年高等教育教师职务聘用协议电子版版B版
- 2024聘用货车司机及运输安全管理合同范本3篇
- 2024年消防应急照明安装合同6篇
- 血常规报告单-一文读懂!(超全版)
- 2025年ktv房间租赁及节假日特别优惠合同3篇
- 2025年度企业财务审计与税务筹划代理服务合同2篇
- 一元二次不等式教案5篇
- 仰韶文化中彩陶纹饰常出现鱼鸟蛙等构图分析审美文化内涵
- 新人教版小学三年级数学上册知识点整理归纳培训课件
- 霉菌性阴道炎VVC的分类及诊治
- 预制舱技术方案思源弘瑞课件
- 四年级科学《运动与摩擦力》说课课件
- 诉讼费退费确认表
- 全球变暖视野下中国与墨西哥的能源现状分析
- 新外研版八年级上册英语全册教案(教学设计)
- 2022年(高级)茶艺师职业资格考试参考题库-下(多选、判断题部分)
- 边坡安全施工组织方案
- 【讲座】新高考文言文命题特点及备考策略
- 《环境监测》土壤环境质量监测方案设计
评论
0/150
提交评论