




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年福建省福州市飞竹中学高三数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知复数z=,则z的共轭复数是()A.1﹣i B.1+i C.i D.﹣i参考答案:A【考点】复数代数形式的乘除运算;复数的基本概念.【分析】复数分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,即可得到选项.【解答】解:复数z==所以它的共轭复数为:1﹣i故选A2.函数的图象大致是(
)参考答案:B为奇函数,排除A,C.当时,,排除D.3.根据历年统计资料,我国东部沿海某地区60周岁以上的老年人占0.2,在一个人是60周岁以上的条件下,其患高血压的概率为0.45,则该地区一个人既是60周岁以上又患高血压的概率是(
)A.0.45
B.0.25
C.0.09
D.0.65参考答案:C4.若,,则(
)
参考答案:C略5.已知等差数列{an}的首项为a1,公差为d,其前n项和为Sn,若直线y=a1x+m与圆(x﹣2)2+y2=1的两个交点关于直线x+y﹣d=0对称,则数列{}的前10项和=()A. B. C. D.2参考答案:B【考点】等差数列的性质.【分析】利用直线y=a1x+m与圆(x﹣2)2+y2=1的两个交点关于直线x+y﹣d=0对称,可得a1=2,d=2,利用等差数列的求和公式求出Sn,再用裂项法即可得到结论.【解答】解:∵直线y=a1x+m与圆(x﹣2)2+y2=1的两个交点关于直线x+y﹣d=0对称,∴a1=2,2﹣d=0∴d=2∴Sn==n2+n∴=,∴数列{}的前10项和为1﹣+﹣+…+=故选:B.6.函数在上的图象是
(
)
参考答案:A略7.已知复数(是虚数单位),则下列说法正确的是
(A)复数的虚部为
(B)复数的虚部为
(C)复数的共轭复数为
(D)复数的模为参考答案:D8.若函数的图象与轴有公共点,则的取值范围是(
)A.
B.
C.
D.参考答案:A9.某程序框图如图所示,执行该程序,若输入的a值为1,则输出的a值为() A.1 B.2 C.3 D.5参考答案:C【考点】程序框图. 【专题】计算题;图表型;分析法;算法和程序框图. 【分析】由已知中的程序框图及已知中输入a=3,可得:进入循环的条件为i≤3,模拟程序的运行结果,即可得到输出的a值. 【解答】解:模拟执行程序框图,可得 a=1 i=1 a=2×1﹣1=1,i=2, 不满足条件i>3,a=2×2﹣1=3,i=3 不满足条件i>3,a=2×3﹣3=3,i=4 满足条件i>3,退出循环,输出a的值为3. 故选:C. 【点评】本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用表格法对数据进行管理,属于基础题. 10.若抛物线的焦点与椭圆的右焦点重合,则的值为(
)A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.命题“”的否定为
。参考答案:特称命题的否定是全称命题,“存在”对应“任意”12.已知实数满足,下列五个关系式:①②③④⑤,其中不可能成立的关系式为
。(填序号)参考答案:①④13.用表示自然数的所有因数中最大的那个奇数,例如:9的因数有1,3,9,,10的因数有1,2,5,10,,那么=
.参考答案:
【知识点】等比数列及等比数列前n项和解析:根据g(n)的定义易知当n为偶数时,g(n)=g(n),且若n为奇数则g(n)=n,令f(n)=g(1)+g(2)+g(3)+…g(2n﹣1)则f(n+1)=g(1)+g(2)+g(3)+…g(2n+1﹣1)=1+3+…+(2n+1﹣1)+g(2)+g(4)+…+g(2n+1﹣2)=+g(1)+g(2)+…+g(2n+1﹣2)=4n+f(n)即f(n+1)﹣f(n)=4n分别取n为1,2,…,n并累加得f(n+1)﹣f(1)=4+42+…+4n=(4n﹣1)又f(1)=g(1)=1,所以f(n+1)=+1所以f(n)=g(1)+g(2)+g(3)+…g(2n﹣1)=(4n﹣1﹣1)+1令n=2015得g(1)+g(2)+g(3)+…+g(22015﹣1)=.故答案为:【思路点拨】本题解决问题的关键是利用累加法和信息题型的应用,即利用出题的意图求数列的和.14.向量、满足,,与的夹角为,则___________.参考答案:略15.设,则等于
.参考答案:,所以,故答案为.16.已知实数x,y满足,则3x2+y2最小值为.参考答案:【考点】7D:简单线性规划的应用.【分析】确定不等式表示的平面区域,求出特殊点位置,3x2+y2的值,比较即可得到结论.【解答】解:不等式表示的平面区域如图所示设z=3x2+y2,则由,可得x=,y=,此时z=由,可得x=,y=,此时z=;当直线与z=3x2+y2相切时,可得∴△=12﹣15(4﹣z)=0,∴z=,此时x=<,不在可行域内,不满足题意∵<∴3x2+y2最小值为故答案为:【点评】本题考查线性规划知识,考查学生分析解决问题的能力,属于中档题.17.函数的定义域为_____▲____.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).(Ⅰ)求图中a的值;(Ⅱ)估计该次考试的平均分(同一组中的数据用该组的区间中点值代表);(Ⅲ)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
晋级成功晋级失败合计男16
女
50合计
(参考公式:K2=,其中n=a+b+c+d)P(K2≥k)0.400.250.150.100.050.025k0.7801.3232.0722.7063.8415.024
参考答案:【考点】BO:独立性检验的应用.【分析】(Ⅰ)由频率和为1,列方程求出a的值;(Ⅱ)利用直方图中各小组中点乘以对应的频率,求和得平均分;(Ⅲ)根据题意填写,计算观测值K2,对照临界值得出结论.【解答】解:(Ⅰ)由频率分布直方图各小长方形面积总和为1,得(2a+0.020+0.030+0.040)×10=1,解得a=0.005;(Ⅱ)由频率分布直方图知各小组依次是,其中点分别为55,65,75,85,95,对应的频率分别为0.05,0.30,0.40,0.20,0.05,计算平均分为=55×0.05+65×0.3+75×0.4+85×0.2+95×0.05=74(分);(Ⅲ)由频率分布直方图值,晋级成功的频率为0.2+0.05=0.25,故晋级成功的人数为100×0.25=25,填写2×2列联表如下,
晋级成功晋级失败合计男163450女94150合计2575100假设晋级成功与性别无关,根据上表计算K2==≈2.613>2.072,所以有超过85%的把握认为“晋级成功”与性别有关.19.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.参考答案:(1)因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,所以经直观分析,收看新闻节目的观众与年龄是有关的.(2)应抽取大于40岁的观众人数为×5=×5=3(名).(3)用分层抽样方法抽取的5名观众中,20至40岁有2名(记为Y1,Y2),大于40岁有3名(记为A1,A2,A3).5名观众中任取2名,共有10种不同取法:Y1Y2,Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,A1A2,A1A3,A2A3.设A表示随机事件“5名观众中任取2名,恰有1名观众年龄为20至40岁”,则A中的基本事件有6种:Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,20.已知函数f(x)=ln(x+2a)﹣ax,a>0.(Ⅰ)求f(x)的单调区间;(Ⅱ)记f(x)的最大值为M(a),若a2>a1>0且M(a1)=M(a2),求证:;(Ⅲ)若a>2,记集合{x|f(x)=0}中的最小元素为x0,设函数g(x)=|f(x)|+x,求证:x0是g(x)的极小值点.参考答案:【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(Ⅰ)先求导,根据导数和函数单调性的关系即可得到函数的单调区间,(Ⅱ)由(Ⅰ)知,M(a)=f(﹣2a)=2a2﹣1﹣lna,继而得到2a12﹣1﹣lna1=2a22﹣1﹣lna2,通过转化得到4a1a2=,设h(t)=t﹣﹣2lnt,t>1根据函数的单调性证明<1,问题即可得以证明,(Ⅲ)由(Ⅰ)可得,g(x)=,分类讨论,得到g(x)在(﹣2a,x0)递减,g(x)在(x0,﹣2a)递增,故x0是g(x)的极小值点.【解答】解:(Ⅰ):f′(x)=﹣a=,∵x>﹣2a,a>0,由f′(x)>0,得﹣2a<x<﹣2a,由f′(x)<0,得x>﹣2a,∴f(x)的增区间为(﹣2a,﹣2a),减区间为(﹣2a,+∞),(Ⅱ)由(Ⅰ)知,M(a)=f(﹣2a)=2a2﹣1﹣lna,∴2a12﹣1﹣lna1=2a22﹣1﹣lna2,∴2(a22﹣a12)=lna2﹣lna1=ln,∴2a1a2=ln,∴4a1a2(﹣)=2ln,∴4a1a2=,设h(t)=t﹣﹣2lnt,t>1∴h′(t)=1+﹣=(1﹣)2>0,∴h(x)在(1,+∞)单调递增,h(t)>h(1)=0,即t﹣>2lnt>0,∵>1,∴﹣>2ln>0,∴<1,∴a1a2<;(Ⅲ)由(Ⅰ)可知,f(x)在区间(﹣2a,﹣2a),又x→﹣2a时,f(x)→﹣∞,易知f(﹣2a)=M(a)=2a2﹣1﹣lna在(2,+∞)递增,M(a)>M(2)=7﹣ln2>0,∴﹣2a<x0<﹣2a,且﹣2a<x<x0,f(x)<0,x0<x<﹣2a时,f(x)>0,∴当﹣2a<x<﹣2a时,g(x)=,于是﹣2a<x<x0时,g′(x)=(a+1)﹣<a+1﹣,∴若能证明x0<﹣2a,便能证明(a+1)﹣<0,记φ(a)=f(﹣2a)=2a2+﹣1﹣ln(a+1),∴φ(a)=4a﹣﹣,∵a>2,∴h′(a)>8﹣>0,∴φ(a)在(2,+∞)上单调递增,∴φ(a)>φ(2)=﹣ln3>0,∵﹣2a<﹣2a,∴f(x)在(﹣2a,﹣2a)内单调递减,∴x0∈(﹣2a,﹣2a),于是﹣2a<x<x0时,g′(x)=a+1﹣<a+1﹣=0,∴g(x)在(﹣2a,x0)递减,当x0<x<﹣2a时,相应的g′(x)=﹣(a﹣1)>﹣(a﹣1)=1>0,∴g(x)在(x0,﹣2a)递增,故x0是g(x)的极小值点.21.某企业准备投入适当的广告费对产品进行促销,在一年内预计销售Q(万件)与广告费x(万元)之间的函数关系为.已知生产此产品的年固定投入为4.5万元,每生产1万件此产品仍需再投入32万元,且能全部销售完.若每件销售价定为:“平均每件生产成本的150%”与“年平均每件所占广告费的25%”之和.(1)试将年利润W(万元)表示为年广告费x(万元)的函数;
(2)当年广告费投入多少万元时,企业年利润最大?最大利润为多少?参考答案:(1)由题意可得,产品的生产成本为(32Q+4.5)万元,即当年广告费为7万元时,企业利润最大,最大值为55万元.【说明】函数应用题,基本不等式求最值.22.设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,(1)证明:|a+b|<;(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.参考答案:【考点】不等式的证明;绝对值不等式的解法.【分析】(1)利用绝对值不等式的解法求出集合M,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 16187:2025 EN Footwear and footwear components - Test method to assess antibacterial activity
- 【正版授权】 IEC 60923:2005+AMD1:2006 CSV FR-D Auxiliaries for lamps - Ballasts for discharge lamps (excluding tubular fluorescent lamps) - Performance requirements
- 【正版授权】 IEC 60669-1:1998+AMD1:1999 CSV FR-D Switches for household and similar fixed-electrical installations - Part 1: General requirements
- 生命生活教育主题班会
- 心内科专科护理质量指标
- 2025年会计人员工作方案演讲稿
- 基于多媒体技术的信息展示与推广
- 高校军训2025年工作方案演讲稿
- 楼梯钢筋绑扎规范
- 年度工作报告与总结
- 2024年员工知识产权与保密协议范本:企业知识产权保护实务3篇
- 人教版二年级数学下册全册大单元教学设计
- JGJ46-2024 建筑与市政工程施工现场临时用电安全技术标准
- DZ∕T 0283-2015 地面沉降调查与监测规范(正式版)
- HG第四章显示仪表
- 二五公式验光法
- 图书馆智能照明控制系统设计-毕业论文
- 园林绿化工程施工组织机构方案
- 《中西文化比较》(教学大纲)
- 室内智能加湿器设计说明
- 发电机整体气密试验的要求
评论
0/150
提交评论