![2022年江西省赣州市南康第一中学高二数学理月考试题含解析_第1页](http://file4.renrendoc.com/view/5d2aa73fd23ce3a135aecb5783b4fd79/5d2aa73fd23ce3a135aecb5783b4fd791.gif)
![2022年江西省赣州市南康第一中学高二数学理月考试题含解析_第2页](http://file4.renrendoc.com/view/5d2aa73fd23ce3a135aecb5783b4fd79/5d2aa73fd23ce3a135aecb5783b4fd792.gif)
![2022年江西省赣州市南康第一中学高二数学理月考试题含解析_第3页](http://file4.renrendoc.com/view/5d2aa73fd23ce3a135aecb5783b4fd79/5d2aa73fd23ce3a135aecb5783b4fd793.gif)
![2022年江西省赣州市南康第一中学高二数学理月考试题含解析_第4页](http://file4.renrendoc.com/view/5d2aa73fd23ce3a135aecb5783b4fd79/5d2aa73fd23ce3a135aecb5783b4fd794.gif)
![2022年江西省赣州市南康第一中学高二数学理月考试题含解析_第5页](http://file4.renrendoc.com/view/5d2aa73fd23ce3a135aecb5783b4fd79/5d2aa73fd23ce3a135aecb5783b4fd795.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年江西省赣州市南康第一中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.点关于直线的对称点的坐标是(
)(A)
(B)
(C)
(D)参考答案:D试题分析:设点关于直线的对称点为,由题设且,解之得,故应选D.考点:点对称问题的求解思路和方法.2.展开式中不含项的系数的和为(
)A.-1
B.0
C.1
D.2参考答案:B略3.在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为(
).A. B. C. D.2π参考答案:C由题意可知几何体的直观图如图:旋转体是底面半径为1,高为2的圆锥,挖去一个相同底面高为1的倒圆锥,几何体的体积为:,综上所述.故选.4.若函数f(x)=kax﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g(x)=loga(x+k)的图象是()A. B. C. D.参考答案:C【考点】3O:函数的图象.【分析】由函数f(x)=kax﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则由复合函数的性质,我们可得k=1,a>1,由此不难判断函数的图象.【解答】解:∵函数f(x)=kax﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(ax﹣a﹣x)=0则k=1又∵函数f(x)=kax﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g(x)=loga(x+k)=loga(x+1)函数图象必过原点,且为增函数故选C5.观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为().A.76
B.80 C.86 D.92参考答案:B略6.设为两条直线,为两个平面,下列四个命题中真命题是(
)
A.若与所成角相等,则 B.若
C.若 D.若参考答案:D7.用一个边长为2的正方形硬纸板,按各边中点垂直折起四个小三角形,做成一个蛋巢,半径为2的鸡蛋(视为球体)放入其中,则鸡蛋中心(球心)与蛋巢底面的距离为(
) A. B.1 C. D.3参考答案:A考点:点、线、面间的距离计算.专题:综合题;空间位置关系与距离.分析:蛋槽的边长是原来硬纸板的对角线长度的一半,为2,蛋槽立起来的小三角形部分高度是1,鸡蛋的半径为2,直径为4,大于折好的蛋巢边长2,由此能求出鸡蛋中心(球心)与蛋巢底面的距离.解答: 解:蛋槽的边长是原来硬纸板的对角线长度的一半,为2,蛋槽立起来的小三角形部分高度是1,鸡蛋的半径为2,直径为4,大于折好的蛋巢边长2,四个三角形的顶点所在的平面在鸡蛋表面所截取的小圆直径就是蛋槽的边长2,根据图示,AB段由三角形AB求出得:AB=,AE=AB+BE=+1,∴鸡蛋中心(球心)与蛋巢底面的距离为+1.故选:A.点评:本题考查点、线、面间距离的计算,解题时要认真审题,注意挖掘题设中的隐含条件,合理地化空间问题为平面问题,注意数形结合法的合理运用.8.阅读如图所示的程序框图,运行相应的程序,输出的结果是()
A.3
B.11C.38
D.123参考答案:B9.将3张不同的演唱会门票分给10名同学中的3人,每人1张,则不同分法的种数是()A.2160 B.720 C.240 D.120参考答案:B【分析】按顺序分步骤确定每张门票的分法种数,根据分步乘法计数原理得到结果.【详解】分步来完成此事.第1张有10种分法;第2张有9种分法;第3张有8种分法,共有10×9×8=720种分法.本题答案为B.【点睛】本小题主要考查分步乘法计数原理,考查分析问题的能力,属于基础题.10.已知函数在[2,+∞)上单调递增,则实数a的取值范围是(
)
A.,
B.
C.
D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.某少数民族的刺绣有着悠久的历史,如下图所示为她们刺绣最简单的三个图案,这些图
案都是由小圆构成,小圆数越多刺绣越漂亮.现按同样的规律刺绣(小圆的摆放规律相同),设第n个图形包含f(n)个小圆.则f(5)的值为
.参考答案:4112.函数的导函数为_________.参考答案:略13.在△ABC中,∠ACB=90°,AB=16,∠ABC=30°,SC⊥平面ABC,SC=8,M是AB边上一动点,则SM的最小值为__________
.参考答案:14.有下列命题:①“”是“”的既不充分也不必要条件;②双曲线与椭圆有相同的焦点;③;④;⑤;其中真命题的有:_______.(填命题的序号上)参考答案:②,④15.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是p,则这个三棱柱的体积为
参考答案:48略16.直线与曲线有两个公共点,则实数a的取值范围是_____.参考答案:【分析】由直线与曲线有两个公共点可得方程有两不等实根,即有两不等实根,令,求出函数的值域即可.【详解】因为直线与曲线有两个公共点,所以方程有两不等实根,即有两不等实根,令,则与函数有两不同交点,因为,所以由得;由得或;因此函数在和上单调递减,在上单调递增,作出函数的简图大致如下:因为;又与函数有两不同交点,所以由图像可得,只需.故答案为【点睛】本题主要考查导数在函数中的应用,只需将函数有交点的问题,转化为方程有零点来处理即可,属于常考题型.17.下面的程序输出的结果=
参考答案:17三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知,点P的坐标为(1)求当时,P满足的概率;(2)求当时,P满足的概率.参考答案:解:(1)如图,点P所在的区域为正方形ABCD的内部(含边界),满足的点的区域为以为圆心,2为半径的圆面(含边界).所求的概率…………6分
(2)满足,且的点有25个,满足,且的点有6个,所求的概率…………14分答:(1)当时,P满足的概率为;(2)当时,P满足的概率为。…………15分
19.已知椭圆C:(a>b>0)的离心率,原点到过点A(﹣a,0),B(0,b)的直线的距离是.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.参考答案:【考点】直线与圆锥曲线的关系;椭圆的标准方程.【专题】方程思想;分类法;直线与圆;圆锥曲线的定义、性质与方程.【分析】(1)运用椭圆的离心率公式和点到直线的距离公式,解方程可得a,b,进而得到椭圆方程;(2)讨论直线l的斜率是否存在,当直线l的斜率存在时,设直线,联立直线方程和椭圆方程,运用判别式为0,再联立直线方程组,求得P,Q的坐标,求得PQ的长,求出OPQ的面积,化简整理,可得最小值.【解答】解:(1)因为,a2﹣b2=c2,所以a=2b.因为原点到直线AB:的距离,解得a=4,b=2.故所求椭圆C的方程为+=1.(2)当直线l的斜率不存在时,直线l为x=4或x=﹣4,都有.当直线l的斜率存在时,设直线,由消去y,可得(1+4k2)x2+8kmx+4m2﹣16=0.因为直线l总与椭圆C有且只有一个公共点,所以△=64k2m2﹣4(1+4k2)(4m2﹣16)=0,即m2=16k2+4.①又由可得;同理可得.由原点O到直线PQ的距离为和,可得.②将①代入②得,.当时,;当时,.因,则0<1﹣4k2≤1,,所以,当且仅当k=0时取等号.所以当k=0时,S△OPQ的最小值为8.综上可知,当直线l与椭圆C在四个顶点处相切时,△OPQ的面积取得最小值8.【点评】本题考查椭圆的方程的求法,注意运用椭圆的性质:离心率公式和点到直线的距离,考查三角形的面积的最小值,注意讨论直线的斜率是否存在,注意联立直线方程和椭圆方程,运用韦达定理和弦长公式,属于中档题.20.m取何实数时,复数.(1)是实数?(2)是虚数?(3)是纯虚数?参考答案:【考点】A2:复数的基本概念.【分析】(1)由虚部等于0且实部分母不等于0列式求解m的值;(2)由虚部不等于0且实部分母不等于0列式求解m的值;(3)由实部等于0且虚部不等于0列式求解m的值.【解答】解:(1)当,即,即m=5时,z的虚部等于0,实部有意义,∴m=5时,z是实数.(2)当,即时,z的虚部不等于0,实部有意义,∴当m≠5且m≠﹣3时,z是虚数.(3)当,即时,z为纯虚数,∴当m=3或m=﹣2时,z是纯虚数.21.设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3处取得极值.(1)求f(x)的解析式;(2)求f(x)在点A(1,16)处的切线方程.参考答案:解(1)f′(x)=6x2-6(a+1)x+6a.∵f(x)在x=3处取得极值,∴f′(3)=6×9-6(a+1)×3+6a=0,解得a=3.∴f(x)=2x3-12x2+18x+8.(2)A点在f(x)上,由(1)可知f′(x)=6x2-24x+18,f′(1)=6-24+18=0,∴切线方程为y=16.略22.如图,在三棱柱ABC﹣A1B1C1中,底面是边长为2的正三角形,倒棱AA1⊥平面ABC,点E,F分别是棱CC1,BB1上的点,且EC=2FB=2.(Ⅰ)若点M是线段AC的中点,证明:(1)MB∥平面AEF;(2)平面AEF⊥平面ACC1A1;(Ⅱ)求三棱锥B﹣AEF的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;平面与平面垂直的判定.【分析】(Ⅰ)(1)取线段AE的中点G,连结MG,由三角形中位线定理可得MG=,又MG∥EC∥BF,可得MBFG是平行四边形,故MB∥FG,由线面平行的判定可得MB∥平面AEF;(2)由MB⊥AC,平面ACC1A1⊥平面ABC,可得MB⊥平面ACC1A1,进一步得到FG⊥平面ACC1A1.由面面垂直的判定可得平面AEF⊥平面ACC1A1;(Ⅱ)作AD⊥BC于D,则AD⊥平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- N-Nitroso-clonidine-生命科学试剂-MCE-2307
- IRF1-IN-1-生命科学试剂-MCE-6527
- 二零二五年度文化场馆消毒防疫服务合同
- 二零二五年度电动助力车租赁与充电桩安装合同
- 2025年度房屋买卖合同变更及产权过户补充协议
- 2025年度理发店入股与客户满意度提升合作协议
- 施工现场施工防塌陷制度
- 施工单位关于施工设备的工作联系函
- 绿色校园教学楼电气节能与环保方案
- 食堂的应急预案
- 《基础会计》教学课件-整套教程电子讲义
- 人教版七年级上册数学全册课时练习带答案
- GB/T 44143-2024科技人才评价规范
- 对医院领导的批评意见怎么写更合适范文(6篇)
- 账期协议书账期合同书
- 2024年常德职业技术学院单招职业适应性测试题库完整
- 天津市河东区2023-2024学年九年级上学期期末数学试题
- 工程防渗漏培训课件
- 黑龙江省哈尔滨市2024年数学八年级下册期末经典试题含解析
- 牛津3000核心词汇表注释加音标1-4 完整版
- 高中英语以读促写教学策略与实践研究课件
评论
0/150
提交评论