河北省廊坊市香城中学2022年高二数学文月考试题含解析_第1页
河北省廊坊市香城中学2022年高二数学文月考试题含解析_第2页
河北省廊坊市香城中学2022年高二数学文月考试题含解析_第3页
河北省廊坊市香城中学2022年高二数学文月考试题含解析_第4页
河北省廊坊市香城中学2022年高二数学文月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省廊坊市香城中学2022年高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为()A.-1

B.1

C.3

D.-3

参考答案:B2.从某班学生中任意找出一人,如果该同学的身高小于160cm的概率为0.2,该同学的身高在[160,175]cm的概率为0.5,那么该同学的身高超过175cm的概率为()A.0.8 B.0.7 C.0.3 D.0.2参考答案:C【考点】CB:古典概型及其概率计算公式.【分析】该班同学的身高共3类:(1)身高小于160cm,(2)身高在[160,175]cm,(3)身高超过175cm,由概率和为1可得结论【解答】解:由题意可得该班同学的身高共3类:(1)身高小于160cm,(2)身高在[160,175]cm,(3)身高超过175cm,他们的概率和为1,∴所求概率P=1﹣0.2﹣0.5=0.3故选:C【点评】本题考查概率的性质,属基础题.3.在四边形ABCD中,若,,则四边形ABCD是(

)A.平行四边行

B.矩形

C.正方形

D.菱形参考答案:D4.随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则p等于()A. B.0 C.1 D.参考答案:D【考点】CN:二项分布与n次独立重复试验的模型.【分析】根据随机变量符合二项分布,根据二项分布的期望和方差的公式和条件中所给的期望和方差的值,得到关于n和p的方程组,解方程组得到要求的未知量p.【解答】解:∵ξ服从二项分布B~(n,p)Eξ=300,Dξ=200∴Eξ=300=np,①;Dξ=200=np(1﹣p),②可得1﹣p==,∴p=1﹣故选D【点评】本题主要考查分布列和期望的简单应用,本题解题的关键是通过解方程组得到要求的变量,注意两个式子相除的做法,本题与求变量的期望是一个相反的过程,但是两者都要用到期望和方差的公式,本题是一个基础题.5.设直线和平面,下列四个命题中,正确的是(

A.若,则

B.,则

C.若,则

D.,则参考答案:D略6.变量X与Y相对应的一组数据为(10,1)、(11.3,2)、(11.8,3)、(12.5,4)、(13,5);变量U与V相对应的一组数据为(10,5)、(11.3,4)、(11.8,3)、(12.5,2)、(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()A.r2<r1<0 B.0<r2<r1C.r2<0<r1 D.r2=r1参考答案:C7.设,则=(

)A. B. C. D.参考答案:C【分析】根据题中已知条件先找出函数的规律,便可发现的循环周期为4,从而求出的值.【详解】解:由上面可以看出,以4为周期进行循环.故选:.【点睛】本题考查三角函数求导、函数周期性的应用,考查观察、归纳方法的应用,属于基础题.8.一个几何体的三视图如图所示,该几何体的体积是(

)A.30

B.40

C.50

D.60

参考答案:A9.曲线=1与曲线=1(k<9)的()A.长轴长相等 B.短轴长相等 C.离心率相等 D.焦距相等参考答案:D【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.【解答】解:曲线=1表示焦点在x轴上,长轴长为10,短轴长为6,离心率为,焦距为8.曲线=1(k<9)表示焦点在x轴上,长轴长为2,短轴长为2,离心率为,焦距为8.对照选项,则D正确.故选D.【点评】本题考查椭圆的方程和性质,考查运算能力,属于基础题.10.若圆上至少有三个不同点到直线:的距离为,则直线的倾斜角的取值范围是

(

)A.[]

B.[]

C.[

D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知命题p:关于x的不等式x2+(a﹣1)x+a2≤0的解集为?;命题q:函数y=(2a2﹣a)x为增函数,若函数“p∨q”为真命题,则实数a的取值范围是.参考答案:a>或a<﹣【考点】复合命题的真假.【分析】假设p、q是真命题,分别求出a的范围,再由p∨q是真命题,分类讨论即可得解【解答】解:当命题p是真命题时:∵x2+(a﹣1)x+a2≤0的解集为?∴(a﹣1)2﹣4a2<0∴当命题q是真命题时:∵函数y=(2a2﹣a)x为增函数∴2a2﹣a>1∴a<或a>1∵“p∨q”为真命题∴可能的情况有:p真q真、p真q假、p假q真①当p真q真时∴a<﹣1或a>1②当p真q假时∴③当p假q真时∴∴故答案为:【点评】本题考查简单命题和符合命题的真假性,注意或命题为真命题时有三种情况,且命题为假命题时有三种情况,要注意分类讨论.属简单题12.已知,复数为纯虚数,则_____________.参考答案:113.已知数列的前项和,那么它的通项公式为=_______

.参考答案:

14.已知曲线C的参数方程为(为参数),则曲线C上的点到直线的距离的最大值为

。参考答案:15.(坐标系与参数方程选做题)在极坐标系中,圆的圆心到直线的距离是

.参考答案:16.数列,,,,…中,有序数对(a,b)可以是__________.参考答案:(21,-5)略17..平面向量也叫二维向量,二维向量的坐标表示及其运算可以推广到n(n≥3)维向量,n维向量可用(x1,x2,x3,x4,…,xn)表示.设=(a1,a2,a3,a4,…,an),=(b1,b2,b3,b4,…,bn),规定向量与夹角θ的余弦为cosθ=.已知n维向量,,当=(1,1,1,1,…,1),=(-1,-1,1,1,1,…,1)时,cosθ等于______________参考答案:(n-4)/n_略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知数列{}满足⑴求数列{}的通项公式;⑵求数列{}的前.参考答案:解(1)设数列的前n项和为,则……………2分

…………6分(2)由

②……………8分

由②-①得,………..……10分

…………..12分19.(本小题满分12分)如图,AB是的直径,PA垂直于所在平面,C是圆周上部同于A、B的一点,且(1)求证:平面平面;(2)求二面角的大小。参考答案:

20.在中,角所对的边分别为,且,(1)求的值;(2)若,,求三角形ABC的面积.参考答案:由已知及正弦定理可得……………2分由两角和的正弦公式得………4分由三角形的内角和可得……………5分因为,所以……………6分(2)由余弦定理得:,

,…………………9分由(1)知……………………10分所以.………12分21.已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.参考答案:【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)由题意可得,解出即可;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),可得直线TF的斜率kTF=﹣m,由于TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).直线方程与椭圆方程可得根与系数的关系.由于四边形OPTQ是平行四边形,可得,即可解得m.此时四边形OPTQ的面积S=.【解答】解:(Ⅰ)由题意可得,解得c=2,a=,b=.∴椭圆C的标准方程为;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),则直线TF的斜率,∵TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).联立,化为(m2+3)y2﹣4my﹣2=0,△>0,∴y1+y2=,y1y2=.∴x1+x2=m(y1+y2)﹣4=.∵四边形OPTQ是平行四边形,∴,∴(x1,y1)=(﹣3﹣x2,m﹣y2),∴,解得m=±1.此时四边形OPTQ的面积S=═=.22.(1)若函数f(x)=x3+bx2+cx+d的单调递减区间(﹣1,2)求b,c的值;(2)设f(x)=,若f(x)在(,+∞)上存在单调递增区间,求a的取值范围;(3)已知函数f(x)=alnx﹣ax﹣3(a∈R),若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意t∈[1,2],函数g(x)=x3+x2[f′(x)+]在区间(t,3)上总不是单调函数,求m的取值范围.参考答案:【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,问题转化为3x2+2bx+c=0的两根分别为﹣1,2,根据根与系数的关系求出a,b的值即可;(2)函数f(x)在(,+∞)上存在单调递增区间,即f′(x)>0在(,+∞)上有解,只需f′()>0即可,根据一元二次函数的性质即可得到结论;(3)求出函数g(x)的导数,问题转化为m+4<﹣3t,根据函数的单调性求出m的范围即可.【解答】解:(1)∵f(x)=x3+bx2+cx+d,∴f'(x)=3x2+2bx+c,因为f(x)=x3+bx2+cx+d的单调递减区间(﹣1,2),所以方程f'(x)=3x2+2bx+c=0的两根分别为﹣1,2,即1=﹣,﹣2=,所以;(2)∵f(x)=﹣x3+x2+2ax,∴函数的导数为f′(x)=﹣x2+x+2a,若函数f(x)在(,+∞)上存在单调递增区间,即f′(x)>0在(,+∞)上有解∵f′(x)=﹣x2+x+2a,∴只需f′()>0即可,由f′()=﹣++2a=2a+>0,解得a>﹣,当a=﹣时,f′(x)=﹣x2+x﹣=﹣(3x﹣2)(3x﹣1),则当x>时,f′(x)<0恒成立,即此时函数f(x)在(,+∞)上为减函数,不满足条件.(3)由f′(2)=﹣=1,a=﹣2,∴f(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论