版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Powder
Metallurgy
PrinciplePowder
Metallurgy
Research
Institute2007Particle
Science
and
Engineering粉末冶金原理(课程分布)
40学时教学方式:
双语讲学
Chinese/English课程内容:
Part
I
Powder
fabrication
粉体制备
PartⅡ
Powder
characterization
性能How
do
the
powders
fabricate?Main
methods
to
fabricate
powdersWhat physic-chemical
phenomenon
could
beobserved
during
powder
fabrication?Which
method
is
suitable
to
sphere
particles?How
about
the
particle
morphologies?How
can
we
obtain
the
high
purity?What
takes
place
during
the
powder
fabri.?Which
condition
to
control
the
particle
size?What
can
we
do?
related
powder
makings.ContinuersWhat
are
the
microstructures
of
the
particles?What
is
the
apparent
density
of
the
powders?Which
equipment
can
measure
the
fine
particles?课时安排Talking
arrangements雾化制粉快速冷凝化学沉积电解制粉还原制粉Atomization
4hrsRSTRapidsolidification
4hrsChemistry
precipitation4hrsElectrical
fabrication
4hrsReduction
8hrs序言
Introduction
2hrsPartⅠ粉末制备28hrs机械研磨
Mechanical
grinding
4hrs参考书籍:ReferencesPowder
Metallurgy
Science粉末冶金原理 黄培云
P/M.
Principle考核成绩
Score
作业30%
卷面考试70%Part
Ⅱ4hrs粉末性能
12hrs颗粒结构Particle
microstructure
4hrs粒度分布Particlesizeanddistribution比表面
Specific
surface
2hrs考试
Testing
2hrs (closebook)What
is
Powder
MetallurgyPowder
metallurgyStudy
of
the
processing
of
metal
powders,including
the
fabrication,
characterization,and
conversionof
metalpowders
intousefulengineering
components.Studyofthe
basiclaws
andmechanisms
ofpowder
fabri.,
powder
compaction,sinteringand
surfacetreatments.R&D
ofnovel
materialsandproducts.Powder
MetallurgyProcessingpowderMicrostructureChemistryPackingSizeShapeFabricationtoolingprocessingMoldRollExtrudeSinterForgeHot
presstestingpropertiesDensityDuctilityMagneticStrengthConductivityMicrostructurePowder
Metallurgy
Processing粉末冶金材料和制品的工艺流程举例原料粉末其它添加剂热压松装烧结粉浆烧注混合压制等静压制轧制挤压烧结烧结预烧结烧缩浸渗
热处理
电镀高温烧结 复压 精整锻造 轧制
挤压 烧结锻打 复烧(浸油)热处理拉丝粉末冶金成品Reasons
for
using
powder
metallurgycostproecisionproductivityEconomic(example:automobilegears)Captiverefractoryreactive(example:tungstenlampfilaments)Uniquealloysmicrostructures(example:stainlesssteel
filters
)Ideal
Applications(example:poroustantalum
capacitors)Iron
and
steelAluminumCopperNickelTungstenStainiess
steelTin0.001
0.01
0.1
1Relative
ProductionThe
futureofpowdermetallurgyA
comparison
of
the
relative
production
for
somecommon
metal
powders,logarithmic
scale.High
volume
production
of
precise,
high
qualitystructural
parts
from
ferrous
alloys;Consolidation
of
high
performance
materials,where
full
density
and
reliability
are
primaryconcerns;Fabrication
of
difficulty
to
process
materials,where
fully
dense
high
performance
alloys
can
befabricated
with
uniform
microstructure;Further
considerations
1Further
considerations
2Economic
consolidation
of
special
alloys,
typicallycomposites
containing
mixed
phase;Synthesis
of
non
equilibrium
materials
such
asamorphous,
microcrystalline,
or
some
special
alloys;Processing
of
complex
parts
with
unique
ingredients(组元)or
uncommon
shapes.粉末冶金发展History
and
development
of
P/M历史部分:武器,生活用具,艺术建筑Weapon,
life
facilities,
arts-construction,
etc.现代部分:硬质合金,高温材料,汽车部件,军事工程Cement
carbide,
refractory
materials,
automobile
parts,equipments
in
defensive,
civilization
products,
etc.目前,
粉末冶金最发达的国家瑞典(Sweden)硬质合金工业非常发达Hoganess,
建立许多子公司,
Be
number
one其次是北美(North
American)和西欧(western
European)
。德国的粉末冶金工业也是处于世界前列-
工具钢.,tooling
steel.美国的粉末冶金公司主要产品用户是汽车制造商
producer,汽车工业auto
vehicle
industry发达,带动了
美国的粉末冶金工业发展,这是因为发达的汽车工业,大量a
huge
of
application
用粉末冶金部件。SametoAmerican,日本Japan的汽车工业的发展带动了粉末冶金工业发展。Different
to
China与中国不一样,the
western
countriesand
Japan西方或日本的粉末冶金工业是由两部分构成
conbined
by
two
part制粉公司:制备各种粉末:Companies
to
fabricate
andsupply
powders制品公司:买进粉末,制备零部件:Companiestofabricate
final
parts能够大量节约材料、lowcast无切削、lesscuting少切削,普通铸造合金切削量在30-50%,粉末冶金产品可少于
5%。Less
or
absent
cutting
machining.“Net
shaping”能够大量节省能源energy
saving能够大量节省劳动labor
saving能够制备其他方法不能制备的材料
specific
materialsand/or
products能够制备其他方法难以生产的零部件the
material
andpart
that
are
difficultly
to
be
produced
by
other
methods粉末冶金技术的优越性与局限性
advantages
and
limitation粉末冶金的特点particularly
points能生产用普通熔炼方法无法生产的具有特殊性能的材料;ability
to
produce
materials
which
cannot
be
produced
by
other
method.①
Porous
materials
and
products,
parts
within
lubricants②
Refractory
metals
such
as
tungsten,
molybdenum,
etc③
Pesudo-alloys,
such
as,
tungsten-copper
alloys④
Composite
materials,
such
as
316
ss
+
bioceramic⑤
Nano-crystalline,
sub-micrometer
crystalline
grain
metal⑥
Special
functional
materials
and
products,
such
asmagnetic
products,
supper
alloys
applied
in
airo-industry.Powder
metallurgy
disadvantages
and
limitationRather
lower
mechanical
properties,
for
their
pores
in
partsSize
and
morphological
limitation,
for
press
machine.Rather
lower
wrought
properties,
for
the
products
maycontain
oxide
that
induce
materials
brittle.Rather
small
industry
background
compared
with
castingand
conventional
materials
industry,
such
iron
and
steelproduced
on
big
scale.1+1>2,
new
materials
and
high
performancePowder
metallurgy
plus
conventional
material
processing粉末冶金新技术Novel
techniques
of
powder
metallurgy快速原形制备技术,RSP粉末注射成形、PIM快速冷凝技术获得非晶粉末、RST粉末溅射成形、powder
spray
forming机械合金化技术、MA温压成形技术,Worm
Comp.纳米粉末技术,Namo-Tech等静压成形-烧结技术,ISP-sintering高性能材料研发,等等.A
Interest
ComparisonMetal
powders:
109
kg/yearIndustry
minerals:
300
times
109
kg/yearCoffee,
tea,
and
tobacco:
1010
kg/yearPowder
metallurgy
is
a
prolonged
growth
phase;Iron
and
steel,
aluminum,
copper,
nickel,
andtungsten
are
the
main
consumption,
worldwide.Automobile
industryGear
partsMechanical
industryP/M
Industry
–200520032004Iron
&
Steel442,799473,804Stainless
Steel8,900
(E)9,350
(E)Copper
&Copper
Base22,63225,204Aluminum50,000
(E)50,000
(E)Molybdenum2,500
(E)2,600
(E)Tungsten3,000
(E)3,500
(E)Tungsten
Carbide5,263
(R)5,891
(R)Nickel10,057
(R)10,110
(R)Tin9351,077546,086
st*581,536
st*(E)
Estimate (R)
Revised*1st=0.9078mt铁基结构合金的高精度highprecise﹑高质量highquality﹑大数量产品。致密高性能材料,主要是理想的密度和牢固性full
density
andreliability。难加工材料的制造,difficulty
to
process
materials全密度具有统一微观结构的高性能合金。4)特殊合金,主要为包含有多相的组分multi-compositescontainingmixedphase,通过增强密度的工艺来制造。
These
will
often
be
fabricated
by
enhanceddensification.5)非平衡nonequilibrium材料的合成例如suchsamorphous非晶,micro-crystalline,or
metastable
alloys微晶和亚稳合金。6)具有独特组分或不常用形状的特殊附件的工艺。粉末冶金未来The
future
of
the
powder
metllurgy30,00025,00020,00015,00010,0005,00001990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004*1
st
=0.9087
mtP/M
Parts Other
Usesst*Copper
and
Copper
base
powder
in
North
AmericaCopper
and
copper-base
powder
in
2004
increased
11.3%
andcopper
powder
base
parts
increased
7%.International
iron
and
steel
powder
Metal
powder
in2004
increased
by
6.5%
to
527,918(mt),
figure
Ironpowder
increased
7%
over
2003
to
430,119mt.1000000900000800000700000600000500000400000300000200000100000Europe**JapanNorthAmericanSt**1st=0.907801994
1996
1998
2000
2002
2004**Reflects
P/M
grade
powders
only
Sourse:MPIF,JPMA,EPMAincludes
stainless
steels
after
1996International
copper
and
copper
basepowders
in
200410000200003000040000019942004Europe**JapanNorthAmerican*st60000500001996
1998
2000
2002**reflects
P/M
grade
powders
only*1st=0.9078source:MPIF,JPMA,EPMAP/M
parts
content
in
a
typical
vehicleNorth
AmericaJapanEurope19807.7kg(17lb)3.03kg(6.7lb)2.5kg(5.5lb)19858.6kg(19lb)3.78kg(8.3lb)19878.8kg(19.5lb)4.3kg(9.5lb)3.2kg(7lb)199010.9kg(24lb)5.55kg(12.21lb)4.1kg(9lb)199412.2kg(27lb)6.64kg(14.6lb)5.7kg(12.5lb)199512.7kg(28lb)6.7kg(14.8lb)6.1kg(13.46lb)199714kg(31lb)6.52kg(14.41lb)199814.9kg(33lb)6.65kg(14.6lb)7.02kg(15.5lb)199915.6kg(34.5lb)7.17kg(15.8lb)7.4kg(16.3lb)200016.3kg(36lb)8.2kg(18lb)200117kg(37.5lb)7.3kg(16lb)8.1kg(17.8lb)200217.7kg(39lb)7.6kg(16.7lb)8.3kg(18.3lb)200318.4kg(40.5lb)8.0kg(17.6lb)8.7kg(19lb)200419.5kg(43lb)9.0kg(19.8lb)North
America
copper
and
copper
base
powder*1
st
=0.9087
mtP/M
Parts Other
Usesst*30,00025,00020,00015,00010,0005,00001990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004Stainless
steel
powder
increased
5%
to
an
estimated8,488
mt.Tungsten
powder
increased
16%
to
3,177
mt
andtungsten
carbide
powder
increased
almost
12%.Although
there
are
about
10
companies
makingaluminum
P/M
parts,
two
players
dominated
the
marketin
North
America.European
iron
and
steel
powder
in
2004
fared
betterthan
North
America,
increasing
by
8.8%
to
172,952mt.Increases
in
iron
powder
in
Japan
did
not
match
NorthAmerica.Estimate
that
that
the
iron
powder
market
now
exceeds908,000mtImpact
of
ChinaIn
the
last
several
years,
China
poses
both
acompetitive
threat
and
potentially
huge
opportunity.It
has
an
estimated
680
P/M
part
makers,
but
onlyabout
five
of
these
are
considered
capable
of
makinghigh
quality
P/M
parts.The
Chinese
P/M
parts
industry
is
experiencing
anestimated
19%
annual
growth
rate.The
typical
passenger
car
in
China
contains
about4.7kg
of
P/M
parts.China
produced
about
85000mt
of
P/M
parts.Chinese
P/M
industry
will
undoubtedly
increase
itsquality
capability
as
more
funds
are
invested,particularly
by
Western
companies.Currentlyrepresentingmore
than
20
non-Chinesethe
U.S,
Europe,
Japan,
Korea,firmsandTaiwan
have
P/M
plants
in
China
mainland.On
the
other
hand,
China
is
beginning
to
impact
theEuropean
automotive
market,
selling
inexpensive
cars.Chapter
2
粉末制备方法Powder
fabrication
methods物理机械法Physic-Mechanical
Protocol机械研磨法制备粉末Milling高温雾化法制备粉末Atomization物理化学法制备粉末氧化物还原法制备粉末reduction
of
metallic
oxides气相沉积法制备粉末precipitation
from
atmosphere
phase液相沉积法制备粉末precipitation
from
liquid
phase电解法制备粉末electrolytic
fabrication
techniques
fromthe
electrode纳米及超细粉末制备技术nano/ultro
fine
powder
preparation从过程的实质来看,大体上可以归纳为两大类,即物理机械法mechanical和物理化学physio-chemical法粉末的生产方法很多,从工业规模industrialscale而言,应用最广泛pervasive
used
method的是还原法
reducing、雾化法和电解而气相沉淀法vapor
decomposition
和液相liquidprecipitation沉淀法在特殊应用时亦很重要。从材质范围来看typeofthematerials,不仅使用金属粉末、也使用合金alloying粉末、金属化合物粉末、ceramics;从粉末外形shape来看,要求使用各种形状的粉末,如生产过滤器时filter,就要求球形粉末;sphericalmorphology,
spherical
particles从粉末粒度来看,要求各种粒度的粉末,从粒度为500~1000um的粗粉末到粒度small
than0.1um的超细粉末superfine
powders。(1)从固态金属与合金制取金属与合金粉末的有机械粉碎法和电化腐蚀法;electricalerosion在固态下制取粉末的方法包括(2)从固态金属氧化物及盐类制取金属与合金粉末的有还原法;从金属和非金属粉末non-metallicpowders、金属氧化物和非金属粉末制取金属化合物粉末的有还原-化合法。
Reducing-chemistrycombined.(1)从金属蒸气冷凝制取金属粉末的蒸气冷凝法;
consolidationfrom
metal
steam在气态制备粉末的方法包括(2)从气态金属羟基物离解制取金属、合金以及包覆粉末的羟基物热离解法;
carbonyl
vapordecomposition。Coated
particles(1)从液态金属与合金制备金属与合金粉末的雾化法;(2)从金属盐溶液置换substitution和还原金属、合金以及包覆粉末的置换法
substitution、溶液氢还原法;liquidhydrogenreduction(3)从金属盐溶液
电解制金属与合金粉末的水溶液电解法
liquid
electrolytic;从金属熔盐电解制金属和金属化合物粉末的熔盐电解法。Meltsaltelectrolysis在液态下制备粉末的方法包括Chapter
3
机械研磨Mechanical
Milling利用机械力将金属或其它材料破碎制取粉末的方法应用非常Pervasive广泛:Suitable
for
脆性粉末制备Brittle
powders陶瓷粉末Ceramic
powder,碳钢Carbon
steel,陶瓷粉末:Hard
alloying
硬质合金;Mixing
and
Blending
混合及合批;机械能—粉末颗表面转化
Mechanical
E-Surface
E
Transformation缺点Disadvantages化学脏化chemicalContamination,dust,Oil油西方:高碳钢high
carbon
steels
and牙科粉末dental
powder银汞合金dental
amalgam
powder铝粉Aluminum
Powder机械夹杂Machining
Impurities最简单的方法(Simplest
method),最简单的设备
(Simplest
Equi.),
最有效(Most
effect)有方法之一.也是能量效能利用率低的方法,能量利用率<10%.Small
than
10%percentBalls
球MaterialsCyindrical
jar
球磨桶仅需要干dry湿wet研磨规律:Grinding
Mechanism球磨如图示过程:A
jar
mill
such
as
diagrammed
in
figure.(a)
Low
speed,
(b)
suitable
speed,
(
c)
high
rotation
speed至少有四种作用力在破碎粉末:冲击:Colliding剪切:Shearing压缩:Compressing磨研:Grinding这些都能形成破碎作用.Crush
Particles.那么破碎脆性brittle粉末所需要冲击colliding力应力与缺陷结构defect和裂纹扩展敏感程度相关.A
view
of
the
action
in
a
jar
mill,
the
impact
ofthe
falling
balls
grinds
the
material
into
powderSEM
of
milled
niobium
powder,prepared
by
hydriding,
milling,
and
vacuumdehydriding leading
to
an
angular
particle
shape公式:Crack
tip
radusCrack
propagation
扩展grinding
efficiency
is
regulated
by
ball
movement
includingcolliding,sliping,friction,compression.
粉末研磨综合有冲击,滑动,摩擦与压缩,研磨效果与球体运动方式相关d
=
(2Er
/
D)1/
2d
:冲击应力E:材料弹模.Elastic
Modalusr:缺陷尺寸.Defect.裂纹尖端曲率半径,裂纹扩展D:粉末尺寸.Partide
Size式表明:Large
particles
require
less
impact
stress
tofracture.粗颗粒粉末只需要小的冲击应力,随粉末颗粒直径变小,冲击应力增大.如果我们知道初始粒度(颗粒尺寸)initial
ParticleSize当要研磨到所需粒度时,需要多少能量可以由一个simplerelationship去估计(estimating)需要的能量.d
=(2Er
/
D)1/
2D1D22
1g:
一个常数
a
constanta:
指数
between
1
and
2这是一个经验工式, a--经验系数.球磨效应影响因素,Factors
to…干/湿. Dry/wet,
脆性/还原性
Brittle/Ductile,Plastic/Rigid粉末粒度Particle
Size球体尺寸Ball
Size旋转速度:Jar
Rotation
on
speed.W
=
g(D-a
-
D-a
)计算:一青铜粉末Boron
Powder
40um,5小时到
20
um,若磨到10um需要多少时间.假设一立方形纳米颗粒晶粒,晶界宽度Width约1.2nm,
如果该晶粒中有20%原子是处于晶界上,估计该晶粒Size.EstimateTotal
energy
change
during
milling由颗粒尺寸变化与总能关系:W
=
g(D-a
-
D-a
)f
iDf
研磨粒度;
Di初始粒度
a=2作业
1
、
复合粉末材料,
屈服强度(yieldingstrength)与第二相关系如下:求:第二相粉末为200nm时,材料的屈服强度,第二相为球形.Sphere
shape
powderParticle
size(mm)ds(MPa)6.4905.91183.61602.8186Decide
ball
的运动Jar
旋转速度最为重要.Behavior球体受力分析:suppose:
only
one
Ball
只有一个球的情况.P:离心力Centrifuge
ForceG:重力G
ForceP1:向心力
A1:临界点R:筒体半径V:
线速度A:
落点Falling
pointRotation
of
small
steel
ball
and
force
action球磨的基本规律Basic
regulation
of
mill球在滚筒中的基本状态转速慢,
泻落状态,摩擦效果grinding转速快,
抛落状态,摩擦,撞击破碎转速快,
抛落状态,撞击破碎colliding假设:we
supposethat只一个球,only
one
ball,球直径比桶直径小球受到两个力作用,Two
force
acting
on
the
ballP
:离心力centrifuge
forceG
:重力gravityV
:线速度linear
velocity
of
the
small
ball.球的受力分析在抛落点平衡时(A点):二力相等,P=P’,P
=
magm
=
Gv
2a
=RP
=
G
·
cosaG v
2• =
G
cosag
RP
=
ma
=v
2cosa
=gR所以Relation
of
linear
speed
and
rotate
speed
isv
=
2pRn
=
pRn60
30Force
action
on
the
small
steel
ball
include
centrifuge
andgravity
force,
suppose
only
one
ball
in
the
jar.Thus,
the
critical
rotation
speed
isp
2
Rn2cosa
=g
3022以g=9.8m/s
代入得:n2
Rcosa
=900v
2cosa
=gR代入得临界状态
当转速加快,球不落下,球转到最高点A1点,此时在这临界状态下,a
=
0n
2
R=
cosa
=
1900转/分R
30
42.4Dn临界=
=D,
the
diameter
of
thejarIn
fact,in
order
to
obtain
the
efficiency
ground
theexperienced
working
rotation
speed
should
lower
than
thecritical
speed,and
the
experienced
working
speed:工作经验表示:n=0.6n临界时,可制取细粉fine
particlesn=0.75n临界时,一般只能制取较粗的粉末coarse
particlesn
=
0.75n临界
=
0.75
·
42.4
/
D
=
32
/
D转/
分
1
D
18 24
d
£
1
~影响球磨效果的因素factors
to
influence
milling
efficiencya、球料比:ratio
of
powder
and
balls,一般粉末填满球体之间的间隙b、球体直径:diameter
of
the
balls选择范围c、研磨介质:medium
空气、protective
atmosphere
,lessen
oxidation,alcohol,
gas,avoiding
assemble(团聚)componentsegeration成分偏析,and
dust(粉尘飞扬)研磨介质:the
excellent
action
of
the
groundmedium:Protective.
Anti-干磨:保护气氛AtmosphereOxidation湿磨:保护和效率;wet
milling湿磨介质:水,乙醇等;milling
mediumwet
grind
split
湿磨尖壁作用,有利于裂纹扩展Crackpropagation减少泠焊.Decrease
cold
weldingIncreasing
the
grinding
efficiency如要产生Colliding
action
冲击作用Experienced
Relation,n实=0.7~0.75n临界如果要Colliding+Slipping
action,n实=0.6n临界Apart
from
above
factors.
There
are:球料比:Ball:Mater
ratio
:4:1~5:1装料比Filling
volume:0.4~0.5
packing球体直径:10~20mmJar
diameter:
300~500mm物料性质
future
of
the
grounding
particles脆性粉末破碎,Brittle
powder延性粉末,ductile
powder,精细分层,fine
lamination,and
cold
welding.Relation
of
powder
surface
area
and
ground
time
is
follow;Sm
粉末极限研磨后的比表面积S0
粉末研磨前的比表面积S
粉末研磨后的表面积,
t
研磨时间,
k
常数氧化铝、氧化锆、炭化硅、钛、镍等都符合这种关系=
ktln
Sm
-
S0Sm
-
S缺点,Disadvantages:Contamination
脏化,Limited
particle
size,Brittle
materials
脆性材料.例1.车削粉研磨a=2.(assumed)Vacuumed
milling8hrs
Di=300µm,Df=110
µm,if
milling
to
75
µm,how
many
hrs
are
needed?8
的1.33
folds,
10.6
hrs.强化球磨:Enhanced
grindinga.
机械合金化Mechanicalalloying
Stirredmill搅拌当球体冲击粉末,产生功能,功能越大,冲击力越大,导致粉末破碎。为了提高球的冲击速度,采用了机械合金化技术。The
input
material
goes
through
a
sequenceof
cold
welding
and
fracture
steps.
As
aconsequence
of
attrition,
the
microstructurebecomes
more
homogeneous
as
sketched
atthe
bottom
of
the
figure.A
view
of
mechanical
alloying
where
therotating
impeller
stirs
a
tank
filled
with
ballsd:
研磨介质(粉体)颗粒直径,粉体直径减少转速增大,时间减少。制备弥散强化。ODS Oxide
DispersionStrengthening
Alloys.
Ni
Base,
Co
Base
,
Fe
BaseSuper
alloys.
Oxide
Particles
Sub.
micrometer
亚微米粉末。Alloying
mechanism
合金化机理:
破碎与冷焊
Fractural/cold
welding导致均匀化homogenization研磨过程所需的能量与搅拌旋转时速度N相关:fit
=cd2
/N1/2
c:经验常数.empirical
Constant高能球磨(Mechanical
alloying
)并不在乎粒度减少,而在乎have
finer
microstructure.
精细结构,
产生复合材料.result
in
Composite
materials。Fe,
Co,
Ni
base
均为韧性ductile
材料,、航空材料、高温合金,
Super-alloys,要的是产生一个结构去达到性能.b.振动球磨Vibratory
Milling粉末靠冲击Colliding碰撞,提高单位时间内球体的碰撞次数,可提高破碎效果,特别是当磨到一定程度,只要小的碰撞,即可使粉末破碎。随着研磨的进行,
粉末平均粒度Mean
particle
size
减小,单位质量(单质体积)粉末表面积增加.
-比表面积:Specific
Surface
Area/per
unit
powder.单位时间内球体的总冲击数empirical
EquationR
:粉末比表面积w:振动频率Freauncyd:球直径d:粉末直径t
:研磨时间e
:振动ApiplinghyR
=f(w,e,d球,d粉,d粉,t)m
:单位时间球磨体总冲击数V:球角体积K:单位体积中球数量B:装填系数N:振动次数/minZ:转动一周球冲击数E:转动一周相邻冲击数m=
V·K·B·n·Z·E
次/minC.行星式球磨:增加球Colliding次数自转+公转Protective
Atmosphere机械合金化,搅拌:非晶,纳米晶,纳米particles,脆性,韧性金属,粉末振动球磨,破碎micrometer
grade纳米级,脆性粉末WC行星式球磨,纳米非晶粉末.研磨过程所需要时间与粉末性质相关。同样用比表面积表达:ln
=t:
milling
time,
k:constantSm:the
limitation
specific
areaSo:
the
initial
specific
areaSt:specific
area
at
t
time=
ktSm
-
S0Sm
-
Stm
t
mS
-S
=(S
-S
)e-ktSt
t时间specific
surface
area.0St
fi
Sm
,
t
›St
越接近SmGrinding
time
increasing.不同性质的粉末,从St
fi
Sm所需的时间不同.Powder
Metallurgy
PrinciplePowder
Metallurgy
Research
Institute2006Chapter
4.
氧化还原制粉方法Chemical
Fabrication.定义:用还原气体(固体)或活泼金属将氧化物还原制备粉末
的过程.(Reduction
of
Oxide
Decompose
of
a
solid
by
a
gas.)1.最简单地.反应平衡常数.Reaction
Equilibrium
ConstantK
=
PH
O
/
PH2
2气体的分压之比.Gas
partial
pressure
.(Ratio)FeO(s)
+
H2
(g)
fi
Fe(s)
+
H2O(g)FeO,Fe3O4,Fe的稳定存在与分压有关温度升高:Fe3O4
FeO
Fe反应速率J与反应过程活化能θ,反应温度T,气体分压比相关:J=Aexp(-θ/RT)A:物质常数,频率因子frequency
factor活化能降低,反应温度升高,提高反应速度,有利于还原进行;Metal
oxides
can
be
produced
by
H2
,
CO,
etc.O2+2H2=2H2OO2+2CO=2CO2O2+C=CO2WO3+H2=WO2+H2OWO2+2H2=W+2H2OTiCl4+2Mg=Ti+2MgCl2Reducing
agents (还原剂)a:
Gas
reducing
agents:
H2,
COb:
Solid
reductant:
C
,
metal,
alkaline
metals;The
necessary
conditions
as
reductant:还原剂对氧的亲和力大于对被还原物质的亲和力--热力学thermo-dynamic
必要条件,Only
fit
thenecessary
condition,
the
reaction
can
gothrough.DiscussionFor
a
close
system,
the
equilibrium
constant,energy,
determines
the
terminal
concentrationratio
of
the
products
to
reactants,For
the
reduction
of
WO3
by
H2,
the
equilibriumconstant
K
is
given
as,K=PH2O/PH2Where
PH2
and
PH2Oare
the
partial
pressure
ofhydrogen
and
water
steam金属物质对氧的亲和力affinity氧离解压Oxide
decomposition
pressureGoing
to
change
with
temperature,and
ingeneral,Temperature
increase,decomposition
pressure
will提高,亲和力
affinity
will
decrease.Thermo
–dynamics
热力学,必要条件.Necessary
ConditionsKinetic
–dynamics
动力学,充分条件.Complementary
condition2.还原过程基本原理热力学基本因素,必要条件,充分条件.(1)
还原过程标准Standard
free
energyX:还原剂. XO:金属氧化物. Me:还原金属.系统中温度一定,各物质离解压一定,通过各物质离解压不同,物质decomposedpressure越低,氧化物越稳定.还原反应化学式:MeO+X=Me+OX1.金属氧化物还原热力学条件
Thermodynamic
condition1)、还原过程标准等压位或自由能free
energy
(焓)的变化如果还原
反应的化学式为X-还原剂,Me-金属氧化物,XO-金属氧化物metaloxide每种氧化物都有各自的离解压,离解压越低,氧化物越稳定MeO有离解压,XO也有离解压decomposedpressure,前者离解压大于后者,MeO才能被X还原,他们的离解反应为:MeO
+
X
=
Me
+
XO(1)(2)上述金属氧化物还原过程标准自由能变化是即ΔZ
φ(2)
<ΔZφ(1)PO2(XO)
<
PO2(MO)2MeO
=
2Me
+
O2O2
(
MeO)DZ
(1)
=
-RT
ln
KP(1)
=
-RT
ln
P2
XO
=
2
X
+
O2O2
(
XO)DZ
(2)
=
-RT
ln
KP(2)
=
-RT
ln
P2DZf
=
1
(DZf(2)
-
DZf(1))
0The
higher
decomposed
pressure,
the
more
unstablethe
metal
oxide,
then
the
greater
the
free
energychange,
the
metal
oxide
will
be
reduced
byreductant.即XO离解反应标准自由能变化应小于MO离解
反应自由能的变化,这样XO才比MO稳定,这时,这时,XO的离解压小于MO的离解压,还原反应
正向进行。氧对X的亲和力大于对Me的亲和力,推广之,对氧的亲和力大于被还原的金属时,都可以作为该金属氧化物的还原剂。金属氧化过程标准自由能变化与温度的关系是:直线关系,截距A
表示在绝对零度
absolutetemperature:T=0时,形成该金属氧化物的自由能DZ
=
A
+
BTC的氧化反应都是随着温度的升高而有利于C的oxidation。Water生成反应的ΔZ°-T关系线在Cu、Co、Fe、Mo、等氧化物的生成线之下,在一定条件下,H2
能还原这些氧化物。In
practice,
the
reaction
system
pressure
equal
to
1,
the
partialpressures
of
PO2
and
PH2
are
small
than
1.DZ
<0,当T上升,随温度难度增加上升C
+
O2
=
CO22C
+
O2
=
2CODZ
变的越负,即[DZ
]增大,从2H
2
+
O2
=
2H
2OThermo
–dynamic
热力学必要条件•••PMO
〉PXOPMO
=PXOPMO〈PXO还原反应进行反应达到平衡反应逆向进行,金属被氧化离解反应2MeO=2Me+O2DZ
(1)=
-RTlnkp
(1)=
-RTlnPO2(MeO)
(1)平衡常数kp(1)
=PO2(MeO)
(1),DZ
<0
反应进行2XO=2X+O2D
DZ
(2)=
-RTlnRp
(2)=
-RTlnPO2(XO)
(2)
D平衡常数kp(2)
=PO2(XO)
(2),DZ
<0
反应进行等温条件:平衡常数用离解压表示.T不变,以(1)-(2),并除以2,消除分数,得mol数,over/by
2(2)(1)(2)(1)2222(
m
)2
(
X
)=
1
[-
RT
ln
kp+
RT
ln
kp
]=
1
[-
RT
ln
PO+
RT
ln
PO
]M
eO
+
X
=
M
e
+
XO
Z
=
-
RT
ln
kp=
1
[
Z
-
Z
]Thermo-dynamiccondition:
ΔZ°
<
0ΔZ2°
<
ΔZ1°
,or还原剂离解压PO2(X)小于金属氧化物离解压PO2(M)根据离解压与反应过程自由能变量的关系,离解压越大,该物质越不稳定unstable,free
energy
changemore.
In
other
words,
XO离解反应change
of
standardfree
energy
is
小于MO离解反应change
of
standardfree
energy,
XO稳定,MO离解,反应向还原方向进行.碳的氧化反应,
2C+O2=2CO与金属氧化反应不同,温度升高,ΔZ°变得越负,表明温度升高,有利于上述C的氧化反应,CO在高温(elevatedtemperature)ismorestable.CO在高温的离解压很小,excellent
reducing
agent.2H2+O2=2H2O在很多金属Fe,
W,
Cu,
Co,
Ni,Mo氧化反应生成线(氧化反应自由能变化-温度关系曲线)之下,H2O的离解压小于这些金属氧化物离解压,H2O
比这些氧化物稳定,therefore,
H2
couldreduce
these
metal
oxides.
H2
,excellent
reductant.2)实际还原过程:实际还原过程在非标准线以下below
thestandard
line,即此时PO2
标准状态体系的分压等于1,如FeO用CO还原,即(1)-(2)得非标准状态22Fe
+
1
O
=
FeO2
22CO
+
1
O
=
COFeO
+
CO
=
Fe
+
CO2PDZ
=
DZ
+RT
lnqCO2
CO=DZ
+
RT
ln
P
PCO
CO2=DZ
-RT
ln
P
PCO
CO2=DZ
-4.57DT
ln
P
PPCO2qP
=
PCO(1)(2)即该还原反应与的分压有关, related
to例如reduction
reaction
of
tungsten
oxideWO2+2H2=W+2H2OΔZ=
ΔZ
°-2
x
4.576TlnPH2/PH2OΔZ’=2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广告牌租赁合同
- 简单购车合同电子版
- 《高级数据库马蔚》课件
- 药物流产护理课件
- 医师法课件教学课件
- 战略合作协议书版
- 肥料委托加工合同3篇
- 面料采购合同
- 第十六课麻雀课件
- 模板人生规划课件
- 设备安装调试方案应急预案
- 城市综合体消防技术标准 DG-TJ08-2408-2022
- AltiumDesigner电路与PCB设计智慧树知到期末考试答案2024年
- 浙江省金华市十校2023-2024学年高一1月期末生物试题【含答案解析】
- 食材验收标准
- 关于提高立法质量的几点思考
- 2023年广东珠海横琴出入境边防检查站警务辅助人员招聘考试真题及答案
- 心理健康之情绪稳定课程
- 健康指导员培训课件
- 运维知识库建设方案设计
- 第3节-光的衍射
评论
0/150
提交评论