微积分学 数列极限收敛准则_第1页
微积分学 数列极限收敛准则_第2页
微积分学 数列极限收敛准则_第3页
微积分学 数列极限收敛准则_第4页
微积分学 数列极限收敛准则_第5页
已阅读5页,还剩61页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

微积分学数列极限收敛准则第一页,共六十六页,编辑于2023年,星期二第二章数列的极限与常数项级数本章学习要求:第二页,共六十六页,编辑于2023年,星期二第二章数列的极限与常数项级数第二节数列极限收敛准则第三节数列极限的运算一、数列极限收敛准则二、无穷小量与无穷大量三、极限的运算四、施笃兹定理及其应用第三页,共六十六页,编辑于2023年,星期二1.单调收敛准则单调减少有下界的数列必有极限.单调增加有上界的数列必有极限.一、数列极限收敛准则通常说成:单调有界的数列必有极限.第四页,共六十六页,编辑于2023年,星期二证由中学的牛顿二项式展开公式例1第五页,共六十六页,编辑于2023年,星期二类似地,有第六页,共六十六页,编辑于2023年,星期二第七页,共六十六页,编辑于2023年,星期二又等比数列求和放大不等式每个括号小于1.第八页,共六十六页,编辑于2023年,星期二综上所述,数列{xn}是单调增加且有上界的,由极限存在准则可知,该数列的极限存在,通常将它纪为e,即e称为欧拉常数.第九页,共六十六页,编辑于2023年,星期二第十页,共六十六页,编辑于2023年,星期二欧拉一身经历坎坷。他于1707年生于瑞士巴塞尔,20年后却永远离开了祖国。在他76年的生命历程中,还有25年住在德国柏林(1741-1766年),其余时间则留在俄国彼得堡。欧拉31岁时右眼失明,59岁时双目失明。他的寓所和财产曾被烈火烧尽(1771年),与他共同生活40年的结发之妻先他10年去世。欧拉声誉显赫。12次获巴黎科学院大奖(1738-1772年)曾任彼得堡科学院、柏林科学院、伦敦皇家学会、巴塞尔物理数学会、巴黎科学院等科学团体的成员。第十一页,共六十六页,编辑于2023年,星期二欧拉成就卓著。生前就出版了560种论著,另有更多未出版的论著。仅仅双目失明后的17年间,还口述了几本书和约400篇论文。欧拉是目前已知成果最多的数学家。欧拉聪明早慧,13岁入巴塞尔大学学文科,两年后获学士学位。第二年又获硕士学位。后为了满足父亲的愿望,学了一段时期的神学和语言学。从18岁开始就一直从事数学研究工作。欧拉具有超人的计算能力。法国天文学家、物理学家阿拉哥(D.F.J.Arago,1786-1853)说:“欧拉计算一点也不费劲,正像人呼吸空气、或像老鹰乘风飞翔一样。”

第十二页,共六十六页,编辑于2023年,星期二有一次,欧拉的两个学生计算一个复杂的收敛级数的和,加到第17项时两人发现在第50位数字相差一个单位。为了确定究竟谁对,欧拉用心算进行了全部运算,准确地找出了错误。特别是在他双目失明后,运用心算解决了使牛顿头疼的月球运动的复杂分析运算。欧拉创用a,b,c表示三角形的三条边,用A,B,C表示对应的三个角(1748);创用表示求和符号(1755);提倡用表示圆周率(1736);1727年用e表示自然对数的底;还用y表示差分等等。十八世纪四十年代,欧拉的一些著作就已传到中国,如他在1748年出版的《无穷分析引论》。第十三页,共六十六页,编辑于2023年,星期二2.数列极限的夹逼定理设数列{xn},{yn},{zn}满足下列关系:(2)则(1)ynxnzn,nZ+(或从某一项开始);想想:如何证明夹逼定理?第十四页,共六十六页,编辑于2023年,星期二第十五页,共六十六页,编辑于2023年,星期二解由于例2想得通吧?第十六页,共六十六页,编辑于2023年,星期二解例3第十七页,共六十六页,编辑于2023年,星期二夹逼定理例4解第十八页,共六十六页,编辑于2023年,星期二例5解夹逼定理请自己做!第十九页,共六十六页,编辑于2023年,星期二有界数列的重要性质由任何有界数列必能选出收敛的子数列.定理第二十页,共六十六页,编辑于2023年,星期二左端点构成单调增加的数列右端点构成单调减少的数列第二十一页,共六十六页,编辑于2023年,星期二第二十二页,共六十六页,编辑于2023年,星期二上面所用到的方法归结起来称为“区间套定理”.(区间套定理)定理第二十三页,共六十六页,编辑于2023年,星期二3.柯西收敛准则满足此条件的数列,称为“柯西列”.柯西准则可写为:第二十四页,共六十六页,编辑于2023年,星期二证由柯西收敛准则可知,该数列是发散的.例6第二十五页,共六十六页,编辑于2023年,星期二证由柯西收敛准则可知,该数列是收敛的.例7第二十六页,共六十六页,编辑于2023年,星期二

柯西

A.L.Cauchy(1789-1857)业绩永存的数学大师第二十七页,共六十六页,编辑于2023年,星期二

柯西1789年8月21日出生于巴黎。父亲是一位精通古典文学的律师,与当时法国的大数学家拉格朗日和拉普拉斯交往密切。少年时代柯西的数学才华就颇受这两位大数学的赞赏,并预言柯西日后必成大器。在拉格朗日的建议下,其父亲加强了对柯西文学素质的培养,使得后来柯西在诗歌方面也表现出很高的才华。1805-1810年,柯西考入巴黎理工学校,两年后以第一名的成绩被巴黎桥梁公路学院录取,毕业时获该校会考大奖。1810年成为工程师。1815年获科学院数学大奖,1816年3月被任命为巴黎科学院院士,同年9月,被任命为巴黎理工学校分析学和力学教授。第二十八页,共六十六页,编辑于2023年,星期二由于身体欠佳,接受拉格朗日和拉普拉斯的劝告,放弃工程师工作,致力于纯数学研究。柯西在数学上的最大贡献是在微积分中引进了极限概念,并以极限为基础建立了逻辑清晰的分析体系。这是微积分发展史上的一个重大事件,也是柯西对人类科学发展所作的巨大贡献。1821年柯西提出了极限定义的ε方法,把极限过程用不等式刻划出来,后经维尔斯特拉斯改进为现在教科书上所说的极限定义或ε-δ定义。当今所有微积分教科书都还(至少在本质上)沿用柯西关于极限、连续、收敛等概念。柯西对定积分作了系统的开创性的工作。他把定积分定义为和的极限,并强调在作定积分运算前,应判断定积分的存在性。

第二十九页,共六十六页,编辑于2023年,星期二他首先利用中值定理证明了微积分基本定理。通过柯西以及后来维尔斯特拉斯的艰苦工作,使数学分析的基本概念得到严格化处理,从而结束了200年来微积分在思想上的混乱局面,并使微积分发展为现代数学最基础、最庞大的数学学科。数学分析严谨化的工作一开始就产生了很大的影响。在一次学术会议上柯西提出了级数收敛理论,会后,拉普拉斯急忙回家,关起门来,避不见人,直到将他所发表和未发表的与级数有关的论文和著作全部检查一遍,确认无误为止。第三十页,共六十六页,编辑于2023年,星期二柯西一生撰写的数学论著有800多种。他是19个科学院或著名学术团体的成员。1838年他还被授予男爵封号。他在学术上的贡献涉及到分析学、复变函数论、弹性力学、微分方程、群论、行列式、数论、解析几何、数值分析、微分几何、光学、天体力学等学科或学科分支。柯西一生最大的错误是“失落”了才华出众的年轻数学家伽罗华与阿贝尔的开创性的论文手稿,致使群论晚问世近半个世纪。1857年5月23日柯西病逝于巴黎。他的临终遗言:

“人总是要死的,但他们的业绩永存。”

第三十一页,共六十六页,编辑于2023年,星期二二、无穷小量与无穷大量1.无穷小量对数列极限的描述,实际上,就是对整序变量极限的描述.第三十二页,共六十六页,编辑于2023年,星期二(1)无穷小量的定义简言之:以零为极限的量,为该极限过程中的无穷小量.无穷小量描述的是变量的变化趋势,不是指一个很小的数.第三十三页,共六十六页,编辑于2023年,星期二无穷小量描述的是变量的变化趋势,不是指一个很小的数.例8第三十四页,共六十六页,编辑于2023年,星期二(2)无穷小量的运算性质两个无穷小量的商的情况比较复杂,以后会专门讨论.(推广:常数与无穷小量之积仍为无穷小量.)第三十五页,共六十六页,编辑于2023年,星期二证其它性质可仿此进行证明.第三十六页,共六十六页,编辑于2023年,星期二几个问题结论第三十七页,共六十六页,编辑于2023年,星期二2.无穷大量首先要注意到是,无穷大量与无穷小量一样,无穷大量不是指的一个很大的数,也是描述的变量的变化趋势.第三十八页,共六十六页,编辑于2023年,星期二(1)无穷大量的定义定义无穷大量时,用的是绝对值去掉绝对值符号,则可以定义正无穷大量和负无穷大量.去掉绝对值符号会怎么样?第三十九页,共六十六页,编辑于2023年,星期二第四十页,共六十六页,编辑于2023年,星期二无穷大量描述的是变量的变化趋势,不是指一个很大的数.例9第四十一页,共六十六页,编辑于2023年,星期二由无穷大量与无界量的定义是否可得出:无穷大量一定是无界量,反之,无界量一定是无穷大量?无穷大量一定是无界量.无界量不一定是无穷大量.几个问题考察例题结论第四十二页,共六十六页,编辑于2023年,星期二(2)无穷小量与无穷大量的关系无穷小量与无穷大量互为倒数关系?分母不能为零第四十三页,共六十六页,编辑于2023年,星期二第四十四页,共六十六页,编辑于2023年,星期二利用无穷小量与无穷大量的关系可以将一些无穷大量的运算归结为相应的无穷小量运算,并可得到有关无穷大量的运算性质.第四十五页,共六十六页,编辑于2023年,星期二几个问题结论第四十六页,共六十六页,编辑于2023年,星期二考察例题利用这里提供的数列可以得出上面的结论.第四十七页,共六十六页,编辑于2023年,星期二(3)无穷大量的运算性质请同学自己证明.第四十八页,共六十六页,编辑于2023年,星期二(1)无穷小量与极限的关系上述过程显然可以反推过去,于是就可得出下面的重要定理:三、极限的运算定理怎么写?第四十九页,共六十六页,编辑于2023年,星期二定理或写为第五十页,共六十六页,编辑于2023年,星期二(2)数列(整序变量)极限的运算第五十一页,共六十六页,编辑于2023年,星期二证由无穷小量的运算性质,可得到其余的证明由学生自己完成第五十二页,共六十六页,编辑于2023年,星期二解由于两个无穷大量的差不一定是无穷大,所以进行变形处理:例10第五十三页,共六十六页,编辑于2023年,星期二部分分式法例11解第五十四页,共六十六页,编辑于2023年,星期二

几何平均值极限公式例12解第五十五页,共六十六页,编辑于2023年,星期二例13解第五十六页,共六十六页,编辑于2023年,星期二类似该例的做法,还可以得到下列结果:第五十七页,共六十六页,编辑于2023年,星期二例14解除最大的一个外,其余的均取为零.第五十八页,共六十六页,编辑于2023年,星期二例15解第五十九页,共六十六页,编辑于2023年,星期二例16证第六十页,共六十六页,编辑于2023年,星期二例17证第六十一页,共六十六页,编辑于202

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论