版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省潍坊市临朐县龙岗镇龙岗初级中学2021-2022学年高一数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(4分)三角形ABC的底边BC=2,底边上的高AD=2,取底边为x轴,则直观图A′B′C′的面积为() A. B. C. 2 D. 4参考答案:A考点: 平面图形的直观图.专题: 空间位置关系与距离.分析: 利用平面图形与直观图形面积的比是2,求出平面图形的面积,即可求解直观图A′B′C′的面积.解答: 三角形ABC的底边BC=2,底边上的高AD=2,所以平面图形的面积:=2,取底边为x轴,则直观图A′B′C′的面积为:=.故选:A.点评: 本题考查平面图形与直观图形的面积的比,考查计算能力.2.设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为,则a=(
)A. B.2 C. D.4参考答案:D【考点】对数函数的单调性与特殊点.【分析】因为a>1,函数f(x)=logax是单调递增函数,最大值与最小值之分别为loga2a、logaa=1,所以loga2a﹣logaa=,即可得答案.【解答】解.∵a>1,∴函数f(x)=logax在区间[a,2a]上的最大值与最小值之分别为loga2a,logaa,∴loga2a﹣logaa=,∴,a=4,故选D【点评】本题主要考查对数函数的单调性与最值问题.对数函数当底数大于1时单调递增,当底数大于0小于1时单调递减.3.设是两条不同的直线,是两个不同的平面,给出下列条件,能得到的是()A.
B.
C.
D.参考答案:试题分析:从选项入手:中与可能平行,相交,或是垂直,错误;中与可能垂直或在平面内,错误;中与可能平行,相交,或是垂直,错误;故选.考点:排除法,线面垂直的判定.4.化简[]的结果为
(
)A.5
B.
C.-
D.-5参考答案:B略5.若点P(a,b)与Q(b﹣1,a+1)(a≠b﹣1)关于直线l对称,则直线l的方程是()A.x+y=0 B.x﹣y=0 C.x+y﹣1=0 D.x﹣y+1=0参考答案:D【考点】与直线关于点、直线对称的直线方程.【专题】直线与圆.【分析】由题意可得直线l为线段PQ的中垂线,求得PQ的中点为(,),求出PQ的斜率可得直线l的斜率,由点斜式求得直线l的方程,化简可得结果.【解答】解:∵点P(a,b)与Q(b﹣1,a+1)(a≠b﹣1)关于直线l对称,∴直线l为线段PQ的中垂线,PQ的中点为(,),PQ的斜率为=﹣1,∴直线l的斜率为1,即直线l的方程为y﹣=1×(x﹣),化简可得x﹣y+1=0.故选:D.【点评】本题主要考查两条直线垂直的性质,斜率公式的应用,用点斜式求直线的方程,属于中档题.6.在△ABC中,,则等于(
)A
B
C
D参考答案:C略7.在一段时间内,某种商品的价格x(元)和销售量y(件)之间的一组数据如下表:价格x(元)4681012销售量y(件)358910
若y与x呈线性相关关系,且解得回归直线的斜率,则的值为(
)A.0.2 B.-0.7 C.-0.2 D.0.7参考答案:C【分析】由题意利用线性回归方程的性质计算可得的值.【详解】由于,,由于线性回归方程过样本中心点,故:,据此可得:.故选:C.【点睛】本题主要考查线性回归方程的性质及其应用,属于中等题.8.函数f(x)=lg(﹣x)+的零点所在区间为()A.(﹣,0) B.(﹣3,﹣2) C.(﹣2,﹣1) D.(﹣1,0)参考答案:B【考点】二分法的定义.【分析】由函数零点的存在性定理,结合答案直接代入计算取两端点函数值异号的即可.【解答】解:f(﹣3)=lg3﹣>0,f(﹣2)=lg2﹣<0,∴f(﹣3)f(﹣2)<0由函数零点的存在性定理,函数f(x)的零点所在的区间为(﹣3,﹣2)故选:B9.函数的定义域是()(A)
(B)(C)
(D)参考答案:C10.(5分)已知空间4个球,它们的半径均为2,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为() A. B. C. D. 参考答案:A考点: 球的体积和表面积.专题: 空间位置关系与距离.分析: 将这四个球的球心连接成一个正四面体,并根据四球外切,得到四面体的棱长为2,求出外接球半径,由于这四个球之间有一个小球和这四个球都外切,则小球的球心与四面体的球体重合,进而再由小球与其它四球外切,球心距(即正四面体外接球半径)等于大球半径与小球半径之和,得到答案.解答: 连接四个球的球心,得到一个棱长为4的正四面体,则该正四面体的外接球半径为,若这四个球之间有一个小球和这四个球都外切,则小球的球心与四面体的球体重合,因为由小球与其它四球外切,所以球心距(即正四面体外接球半径)等于大球半径与小球半径之和,所以所求小球的半径为﹣2.故选A.点评: 本题考查棱锥的结构特征,球的结构特征,其中根据已知条件求出四个半径为1的球球心连接后所形成的正四面体的棱长及外接球半径的长是解答本题的关键.二、填空题:本大题共7小题,每小题4分,共28分11.设等差数列{an}的前n项的和为Sn,若a1>0,S4=S8,则当Sn取最大值时,n的值为____________.参考答案:612.函数的定义域为_____
________.参考答案:{x|}13.两平行线间的距离是_
_。参考答案:略14.已知向量=(﹣1,2),=(2,﹣3),若向量λ+与向量=(﹣4,7)共线,则λ的值为
.参考答案:﹣2【考点】平面向量共线(平行)的坐标表示.【分析】利用已知向量表示向量λ+,然后利用向量共线列出方程求解即可.【解答】解:向量=(﹣1,2),=(2,﹣3),向量λ+=(﹣λ+2,2λ﹣3),向量λ+与向量=(﹣4,7)共线,可得:﹣7λ+14=﹣8λ+12,解得λ=﹣2.故答案为:﹣2.15.三棱锥中,分别是的中点,若,且,
则与所成的角为_______.参考答案:略16.若向量=(1,1),=(2,5),=(3,x)满足条件(8-)·=30,则x=
参考答案:417.已知奇函数在定义域上是减函数,且,则的取值范围是
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)某家庭进行理财投资,根据长期收益率市场调查和预测,投资债券等稳键型产品A的收益与投资成正比,其关系如图1所示;投资股票等风险型产品B的收益与投资的算术平方根成正比,其关系如图2所示(收益与投资单位:万元)。(1)分别将A、B两种产品的收益表示为投资的函数关系式;(2)该家庭现有10万元资金,并全部投资债券等稳键型产品A及股票等风险型产品B两种产品,问:怎样分配这10万元投资,才能使投资获得最大收益,其最大收益为多少万元?参考答案:解:(1)设投资为x万元,A、B两产品获得的收益分别为f(x)、g(x)万元,由题意,
又由图知f(1.8)=0.45
,g(4)=2.5;解得
∴
(不写定义域扣1分)(2)设对股票等风险型产品B投资x万元,则对债券等稳键型产品A投资(10-x)万元,
记家庭进行理财投资获取的收益为y万元,
则
设,则,
∴
当也即时,y取最大值
答:对股票等风险型产品B投资万元,对债券等稳键型产品A投资万元时,可获最大收益万元.(答1分,单位1分)
略19.已知向量.(1)设与的夹角为,求的值;(2)若与垂直,求实数的值.参考答案:(1);(2).试题分析:试题解析:(1)(2)解得.考点:向量数量积的坐标表示20.某种商品计划提价,现有四种方案:方案(Ⅰ)先提价m%,再提价n%;方案(Ⅱ)先提价n%,再提价m%;方案(Ⅲ)分两次提价,每次提价%;方案(Ⅳ)一次性提价(m+n)%.已知m>n>0,那么四种提价方案中,提价最多的是哪种方案?参考答案:解:依题意,设单价为1,那么方案(Ⅰ)提价后的价格是1×(1+m%)(1+n%)=1+(m+n)%+m%·n%;方案(Ⅱ)提价后的价格是1×(1+n%)(1+m%)=1+(m+n)%+m%·n%;方案(Ⅲ)提价后的价格是=1+(m+n)%+;方案(Ⅳ)提价后的价格是1+(m+n)%.所以只要比较m%·n%与的大小即可.因为-m%·n%=≥0,
所以≥m%·n%.又因为m>n>0,所以>m%·n%.即>(1+m%)·(1+n%),因此,方案(Ⅲ)提价最多.21.已知直线l:,一个圆的圆心C在x轴上且该圆与y轴相切,该圆经过点.(1)求圆C的方程;(2)求直线l被圆截得的弦长.参考答案:(1);(2).【分析】(1)由题意设圆心,半径,将点代入圆C的方程可求得a,可得圆的方程;(2)求出圆心C到直线l的距离d,利用勾股定理求出l被圆C所截得弦长.【详解】(1)∵圆心在轴上且该圆与轴相切,∴设圆心,半径,,设圆方程为,将点代入得,∴,∴所求圆的方程为.(2)∵圆心到直线:的距离,∴直线被圆截得的弦长为.【点睛】本题考查了直线与圆的位置关系及圆的方程的应用问题,考查了垂径定理的应用,是基础题.22.(16分)(1)在学习函数的奇偶性时我们知道:若函数y=f(x)的图象关于点P(0,0)成中心对称图形,则有函数y=f(x)为奇函数,反之亦然;现若有函数y=f(x)的图象关于点P(a,b)成中心对称图形,则有与y=f(x)相关的哪个函数为奇函数,反之亦然.(2)将函数g(x)=x3+6x2的图象向右平移2个单位,再向下平移16个单位,求此时图象对应的函数解释式,并利用(1)的性质求函数g(x)图象对称中心的坐标;(3)利用(1)中的性质求函数图象对称中心的坐标,并说明理由.参考答案:考点: 对数函数图象与性质的综合应用.专题: 规律型;函数的性质及应用.分析: (1)若函数y=f(x)的图象关于点P(a,b)成中心对称图形,则将函数图象平移后,对称中心与原点重合时,该函数为奇函数,此时应向左平移a个单位,再向下平移b个单位,根据平移变换法则,可得答案.(2)根据平移变换法则,可得函数g(x)=x3+6x2的图象平移后对应的函数解析式,分析其奇偶性后,结合(1)中结论可得原函数的对称中心.(3)设函数图象向左平移a个单位,再向下平移b个单位后关于原点对称,即对应函数为奇函数,根据奇函数的定义,可求出a,b的值,结合(1)的结论可得原函数的对称中心的坐标.解答: (1)函数y=f(x)的图象关于点P(a,b)成中心对称图形,则将函数图象平移后,对称中心与原点重合时,该函数为奇函数,此时应向左平移a个单位,再向下平移b个单位,此时函数的解析式为:y=f(x+a)﹣b(2)函数g(x)=x3+6x2的图象向右平移2个单位,再向下平移16个单位,所得函数y=(x﹣2)3+6(x﹣2)2﹣16,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业防中暑应急预案(10篇)
- 幼儿演讲稿锦集10篇
- 企业财务总监工作总结
- DB12T 598.7-2015 天津市建设项目用地控制指标 第7部分:公益性科研机构项目
- 感恩母亲演讲稿集合五篇
- 学生的实习报告三篇
- 高等数学教程 上册 第4版 习题及答案 P102 第4章 导数的应用
- 影响华法林抗凝效果的药物
- 舞蹈内容课件教学课件
- 部编版历史九年级上册第一单元 第2课《古代两河流域》说课稿
- 2024-2025学年八年级上学期期中考试地理试题
- 2019年湖南岳阳中考满分作文《握手》3
- 危急值的考试题及答案
- 浙江省北斗星盟2023-2024学年高二下学期5月阶段性联考数学试题2
- 统编版(2024新版)七年级《道德与法治》上册第一单元《少年有梦》单元测试卷(含答案)
- 自然拼读法-图文.课件
- 2024中国长江电力股份限公司招聘高频500题难、易错点模拟试题附带答案详解
- 电商主播考勤管理制度
- 2024届宜宾市九年级语文上学期期中考试卷附答案解析
- 2024继续教育《医学科研诚信与医学了研究伦理》答案
- 硫磺安全技术说明书MSDS
评论
0/150
提交评论