版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省达州市土溪中学2022-2023学年高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在复平面内,复数g(x)满足,则z的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:A【考点】A4:复数的代数表示法及其几何意义;A5:复数代数形式的乘除运算.【分析】利用复数的代数形式混合运算化简求出复数,得到复数对应点的坐标,即可得到结果【解答】解:复数z满足z(1+i)=|1+i|,可得z==1﹣i,复数z对应的点为(1,﹣1),在复平面内z的共轭复数=1+i对应的点为(1,1),在第一象限.故选:A.2.设为两条直线,为两个平面,下列四个命题中,正确的命题是()A.若与所成的角相等,则B.若,,则C.若,则D.若,,则参考答案:D【详解】试题分析:A项中两直线还可能相交或异面,错误;B项中两直线还可能相交或异面,错误;C项两平面还可能是相交平面,错误;故选D.3.设抛物线,过点的直线l与抛物线相交于A,B两点,O为坐标原点,设直线OA,OB的斜率分别为,则A.-1
B.2
C.-2
D.不确定参考答案:C设l的方程为,,,由,得,,又,,,故选C.
4.下列各式错误的是
A.
B.
C.
D.
参考答案:A5.如图,PA⊥正方形ABCD,下列结论中不正确是(
)
A.PB⊥BC
B.PD⊥CD
C.PD⊥BD
D.PA⊥BD
参考答案:C略6.若函数f(x)在定义域R内可导,f(1+x)=f(1-x),且当x∈(-∞,1)时,
设,则
()A.
B.
C.
D.参考答案:D7.命题“,”的否定是(
)A.不存在, B.,C., D.,参考答案:D8.已知两点,,点在轴或轴上,若,则这样的点的个数为
A.
B.
C.
D.参考答案:C略9.“x>a”是“x>﹣1”成立的充分不必要条件()A.a的值可以是﹣8 B.a的值可以是C.a的值可以是﹣1 D.a的值可以是﹣3参考答案:B【考点】充要条件.【分析】“x>a”是“成立的充分不必要条件:即x>a推出x>﹣1,x>﹣1不能推出x>a,从而得到a的范围为a>﹣1,对照选择支即可求解【解答】解:∵“x>a”是“x>﹣1”成立的充分不必要条件∴x>a推出x>﹣1,x>﹣1不能推出x>a∴a>﹣1∵{﹣8,﹣,﹣1,﹣3}中只有﹣>﹣1∴a的值可以是故选B10.下列四个命题①垂直于同一条直线的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③垂直于同一条直线的两个平面互相平行;④垂直于同一个平面的两个平面互相平行.其中错误的命题有(
)A.1个
B.2个
C.3个
D.4个参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.若PQ是圆x2+y2=9的弦,PQ的中点是(1,2),则直线PQ的方程是.参考答案:x+2y﹣5=0【考点】直线与圆相交的性质.【分析】设圆的圆心为O,PQ的中点是E,根据圆的弦的性质可知OE⊥PQ,根据点E的坐标求得直线OE的斜率进而求得PQ的斜率,最后利用点斜式求得直线PQ的方程.【解答】解:设圆的圆心为O,PQ的中点是E(1,2),则OE⊥PQ,则koE==2∴kPQ=﹣∴直线PQ的方程为y﹣2=﹣(x﹣1),整理得x+2y﹣5=0故答案为:x+2y﹣5=012.圆锥的侧面展开图为扇形,若其弧长为,半径为,则该圆锥的体积为
。.参考答案:略13.函数在上的最大值是
.参考答案:14.已知等差数列的通项公式,则它的公差为
.参考答案:略15.函数在时有极值10,那么a、b的值为______.参考答案:.由题意得当时,无极值,舍去.满足题意.16.一个与自然数有关的命题,若时命题成立可以推出时命题也成立.现已知时该命题不成立,那么下列结论正确的是:
(填上所有正确命题的序号)①时该命题一定不成立;
②时该命题一定成立;
③时该命题一定不成立;④至少存在一个自然数,使时该命题成立;
⑤该命题可能对所有自然数都不成立.参考答案:③⑤略17.执行如图所示的程序框图,如果输出s=1320,则正整数M为
.参考答案:13循环依次为结束循环,所以,即正整数为13
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在直角坐标系xOy中,圆C的参数方程为(为参数),以O为极点,x轴非负半轴为极轴建立极坐标系.直线l的极坐标方程是.(Ⅰ)求圆C的极坐标方程和直线的直角坐标方程;(Ⅱ)射线与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.参考答案:(Ⅰ)圆:,直线:;(Ⅱ)2.【分析】(Ⅰ)首先把圆的参数方程转化为普通方程,再利用普通方程与极坐标方程之间的转化公式即可得到圆的极坐标方程,化简直线的极坐标方程,利用普通方程与极坐标方程之间的转化公式即可得到直线的极坐标方程;(Ⅱ)设为点的极坐标,由,联立即可,设为点的极坐标,同理即可解得,利用即可求出。【详解】解:(I)利用,把圆的参数方程(为参数)化为,∴,即.由化简得:,则直线的直角坐标方程为:,(II)设为点的极坐标,由,解得.设为点的极坐标,由,解得.∵,∴.∴.【点睛】本题考查参数方程化为普通方程、普通方程转化为极坐标方程,弦长问题,考查计算能力,属于中档题。19.已知抛物线方程为y2=4x,直线L过定点P(﹣2,1),斜率为k,k为何值时,直线L与抛物线y2=4x只有一个公共点;有两个公共点;没有公共点?参考答案:【考点】抛物线的简单性质.【分析】设出直线方程代入抛物线方程整理可得k2x2+(4k2+2k﹣4)x+4k2+4k+1=0(*)(1)直线与抛物线只有一个公共点?(*)只有一个根(2)直线与抛物线有2个公共点?(*)有两个根(3)直线与抛物线没有一个公共点?(*)没有根【解答】解:由题意可设直线方程为:y=k(x+2)+1,代入抛物线方程整理可得k2x2+(4k2+2k﹣4)x+4k2+4k+1=0(*)(1)直线与抛物线只有一个公共点等价于(*)只有一个根①k=0时,y=1符合题意;②k≠0时,△=(4k2+2k﹣4)2﹣4k2(4k2+4k+1)=0,整理,得2k2+k﹣1=0,解得k=或k=﹣1.综上可得,k=或k=﹣1或k=0;(2)由(1)得2k2+k﹣1<0且k≠0,∴﹣1<k<且k≠0;(3)由(1)得2k2+k﹣1>0,∴k>或k<﹣1.20.设抛物线的焦点为,准线为,点A在抛物线上,已知以为圆心、为半径的圆交于B、D两点.(1)若,求的面积;(2)若A、B、F三点在同一条直线上,求直线的方程.参考答案:略21.(本小题8分)在中,,求.(原创题)参考答案:22.已知函数(1)当时,求关于x的不等式的解集;(2)若关于x的不等式有解,求a的取值范围.参考答案:(1);(2)【分析】(1)将代入函数,根据零点分段法去掉绝对值,分别建立不等式组,解不等式组取并集;(2)根据不等式有解等价于,又根据三角不等式得,即函数的最小值为,将问题转化为,求解即可求的取值范围.【详解】解:(1)当时,不等式为.若,则即;若,则舍去;若,则即;综上,不等式的解集为(2)因为,得到的最小值为,所以,得.【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业防中暑应急预案(10篇)
- 幼儿演讲稿锦集10篇
- 企业财务总监工作总结
- DB12T 598.7-2015 天津市建设项目用地控制指标 第7部分:公益性科研机构项目
- 感恩母亲演讲稿集合五篇
- 学生的实习报告三篇
- 高等数学教程 上册 第4版 习题及答案 P102 第4章 导数的应用
- 影响华法林抗凝效果的药物
- 舞蹈内容课件教学课件
- 部编版历史九年级上册第一单元 第2课《古代两河流域》说课稿
- 棒球比赛记录基础手册
- 跨越门槛童心出发-少先队仪式教育的成长探索之路 论文
- 数字媒体的传播者和受众
- cad及天正快捷键大全
- 森林防火通道规范
- GB/T 2910.1-2009纺织品定量化学分析第1部分:试验通则
- GB/T 28653-2012工业氟化铵
- GB/T 27021.3-2021合格评定管理体系审核认证机构要求第3部分:质量管理体系审核与认证能力要求
- GB/T 13914-2013冲压件尺寸公差
- 井底的四只小青蛙
- FZ/T 52021-2012牛奶蛋白改性聚丙烯腈短纤维
评论
0/150
提交评论