版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1数据链路层的基本概念1.帧同步FarmeSynchronization2.链路管理DataLinkManagement3.差错控制Errorcontrol4.流量控制FlowControl5.透明传输Transparenttransmission6.识别数据和控制信息
7.寻址Addressing数据链路层的简单模型局域网广域网主机
H1主机
H2路由器
R1路由器
R2路由器
R3电话网局域网主机
H1
向
H2
发送数据链路层应用层运输层网络层物理层链路层应用层运输层网络层物理层链路层网络层物理层链路层网络层物理层链路层网络层物理层R1R2R3H1H2从层次上来看数据的流动数据链路层的简单模型(续)局域网广域网主机
H1主机
H2路由器
R1路由器
R2路由器
R3电话网局域网主机
H1
向
H2
发送数据链路层应用层运输层网络层物理层链路层应用层运输层网络层物理层链路层网络层物理层链路层网络层物理层链路层网络层物理层R1R2R3H1H2仅从数据链路层观察帧的流动3.1.1数据链路和帧
链路(link)是一条无源的点到点的物理线路段,中间没有任何其他的交换结点。一条链路只是一条通路的一个组成部分。数据链路(datalink)除了物理线路外,还必须有通信协议来控制这些数据的传输。若把实现这些协议的硬件和软件加到链路上,就构成了数据链路。现在最常用的方法是使用适配器(即网卡)来实现这些协议的硬件和软件。一般的适配器都包括了数据链路层和物理层这两层的功能。
IP数据报1010……0110帧取出数据链路层网络层链路结点A结点B物理层数据链路层结点A结点B帧(a)(b)发送帧接收链路IP数据报1010……0110帧装入数据链路层传送的是帧数据链路层像个数字管道常常在两个对等的数据链路层之间画出一个数字管道,而在这条数字管道上传输的数据单位是帧。早期的数据通信协议曾叫作通信规程(procedure)。因此在数据链路层,规程和协议是同义语。结点结点帧帧数据链路层数据链路层使用的信道主要有以下两种类型:点对点信道。这种信道使用一对一的点对点通信方式。广播信道。这种信道使用一对多的广播通信方式,因此过程比较复杂。广播信道上连接的主机很多,因此必须使用专用的共享信道协议来协调这些主机的数据发3.2数据链路控制规程
根据帧控制的格式,可以分为面向字符型面向比特型面向字符型的链路控制规程在这类规程中,用字符编码集中的几个特定字符来控制链路的操作,监视链路的工作状态,例如,采用国际5号码中的SOH、STX作为帧的开始,ETX、ETB作为的结束,ENQ、EOT、ACK、NAK等字符控制链路操作。面向字符型规程有一个很大的缺点,就是它与所用的字符集有密切的关系,使用不同字符集的两个站之间,很难使用该规程进行通信。面向字符型规程主要适用于中低速异步或同步传输,很适合于通过电话网的数据通信。面向比特型的链路控制规程在这类规程中,采用特定的二进制序列01111110作为帧的开始和结束,以一定的比特组合所表示的命令和响应实现链路的监控功能,命令和响应可以和信息一起传送。所以它可以实现不编码限制的、高可靠和高效率的透明传输。面向比特型规程主要适用于中高速同步半双工和全双工数据通信,如分组交换方式中的链路层就采用这种规程。随着通信的发展,它的应用日益广泛。在数据链路层能够实现可靠传输的协议主要有:高级数据链路控制规程HDLC点对点协议PPP。成帧成帧的三个基本问题(1)封装成帧(2)透明传输(3)差错控制1.封装成帧封装成帧(framing)就是在一段数据的前后分别添加首部和尾部,然后就构成了一个帧。确定帧的界限。首部和尾部的一个重要作用就是进行帧定界。
帧结束帧首部IP数据报帧的数据部分帧尾部MTU数据链路层的帧长开始发送帧开始用控制字符进行帧定界的方法举例SOH装在帧中的数据部分帧帧开始符帧结束符发送在前EOT2.透明传输SOHEOT出现了“EOT”被接收端当作无效帧而丢弃被接收端误认为是一个帧数据部分EOT完整的帧发送在前解决透明传输问题发送端的数据链路层在数据中出现控制字符“SOH”或“EOT”的前面插入一个转义字符“ESC”(其十六进制编码是1B)。字节填充(bytestuffing)或字符填充(characterstuffing)——接收端的数据链路层在将数据送往网络层之前删除插入的转义字符。如果转义字符也出现数据当中,那么应在转义字符前面插入一个转义字符。当接收端收到连续的两个转义字符时,就删除其中前面的一个。SOHSOHEOTSOHESCESCEOTESCSOHESCESCESCSOH原始数据EOTEOT经过字节填充后发送的数据字节填充字节填充字节填充字节填充发送在前帧开始符帧结束符用字节填充法解决透明传输的问题SOH3.差错检测在传输过程中可能会产生比特差错:1可能会变成0而0也可能变成1。在一段时间内,传输错误的比特占所传输比特总数的比率称为误码率
BER(BitErrorRate)。误码率与信噪比有很大的关系。为了保证数据传输的可靠性,在计算机网络传输数据时,必须采用各种差错检测措施。循环冗余检验的原理在数据链路层传送的帧中,广泛使用了循环冗余检验CRC的检错技术。在发送端,先把数据划分为组。假定每组k个比特。假设待传送的一组数据M=101001(现在k=6)。我们在M的后面再添加供差错检测用的n
位冗余码一起发送。冗余码的计算用二进制的模
2
运算进行2n乘M的运算,这相当于在M后面添加n个0。得到的(k+n)位的数除以事先选定好的长度为(n+1)位的除数
P,得出商是Q而余数是R,余数R比除数P少1位,即R是n
位。冗余码的计算举例现在
k=6,M=101001。设
n=3,除数
P=1101,被除数是2nM=101001000。模2运算的结果是:商
Q=110101,
余数
R=001。把余数R作为冗余码添加在数据M的后面发送出去。发送的数据是:2nM+R
即:101001001,共(k+n)位。
110101
←
Q
(商)P(除数)→
1101101001000
←
2nM(被除数)
1101
1110
1101
0111
0000
1110
1101
0110
0000
1100
1101
001←R(余数),作为FCS
循环冗余检验的原理说明帧检验序列FCS在数据后面添加上的冗余码称为帧检验序列
FCS(FrameCheckSequence)。循环冗余检验CRC和帧检验序列FCS并不等同。CRC是一种常用的检错方法,而FCS是添加在数据后面的冗余码。FCS可以用CRC这种方法得出,但CRC并非用来获得FCS的唯一方法。
接收端对收到的每一帧进行CRC检验(1)若得出的余数R=0,则判定这个帧没有差错,就接受(accept)。(2)若余数R
0,则判定这个帧有差错,就丢弃。但这种检测方法并不能确定究竟是哪一个或哪几个比特出现了差错。只要经过严格的挑选,并使用位数足够多的除数
P,那么出现检测不到的差错的概率就很小很小。应当注意仅用循环冗余检验CRC差错检测技术只能做到无差错接受(accept)。“无差错接受”是指:“凡是接受的帧(即不包括丢弃的帧),我们都能以非常接近于
1
的概率认为这些帧在传输过程中没有产生差错”。也就是说:“凡是接收端数据链路层接受的帧都没有传输差错”(有差错的帧就丢弃而不接受)。要做到“可靠传输”(即发送什么就收到什么)就必须再加上确认和重传机制。3.3点对点协议PPP现在全世界使用得最多的数据链路层协议是点对点协议
PPP(Point-to-PointProtocol)。用户使用拨号电话线接入因特网时,一般都是使用PPP协议。用户到ISP的链路使用PPP协议用户至因特网已向因特网管理机构申请到一批
IP地址ISP接入网PPP
协议PPP协议不需要的功能纠错流量控制序号多点线路半双工或单工链路1.PPP协议的组成1992年制订了PPP协议。经过1993年和1994年的修订,现在的PPP协议已成为因特网的正式标准[RFC1661]。PPP协议有三个组成部分一个将IP数据报封装到串行链路的方法。链路控制协议
LCP(LinkControlProtocol)。网络控制协议
NCP(NetworkControlProtocol)。
2.PPP协议的帧格式标志字段
F
=0x7E(符号“0x”表示后面的字符是用十六进制表示。十六进制的
7E
的二进制表示是01111110)。地址字段
A
只置为0xFF。地址字段实际上并不起作用。控制字段
C
通常置为0x03。PPP是面向字节的,所有的PPP
帧的长度都是整数字节。PPP协议的帧格式PPP有一个2个字节的协议字段。当协议字段为0x0021时,PPP帧的信息字段就是IP数据报。若为0xC021,则信息字段是PPP链路控制数据。若为0x8021,则表示这是网络控制数据。
IP数据报1211字节12不超过1500字节PPP帧先发送7EFF03FACFCSF7E协议信息部分首部尾部透明传输问题当PPP用在同步传输链路时,通过硬件采用零比特填充法,来实现透明传输。当PPP用在异步传输时,就使用一种特殊的字符填充法。字符填充法将信息字段中出现的每一个0x7E字节转变成为2字节序列(0x7D,0x5E)。若信息字段中出现一个0x7D的字节,则将其转变成为2字节序列(0x7D,0x5D)。若信息字段中出现ASCII码的控制字符(即数值小于0x20的字符),则在该字符前面要加入一个0x7D字节,同时将该字符的编码加以改变。零比特填充法PPP协议用在SONET/SDH链路时,是使用同步传输(一连串的比特连续传送)。这时PPP协议采用零比特填充方法来实现透明传输。在发送端,只要发现有5个连续1,则立即填入一个0。接收端对帧中的比特流进行扫描。每当发现5个连续1时,就把这5个连续1后的一个0删除,01001111101000101001001111110001010010011111010001010信息字段中出现了和标志字段F完全一样的8比特组合发送端在5个连1之后填入0比特再发送出去在接收端把5个连1之后的0比特删除会被误认为是标志字段F发送端填入0比特接收端删除填入的0比特零比特填充不提供使用序号和确认
的可靠传输PPP协议之所以不使用序号和确认机制是出于以下的考虑:在数据链路层出现差错的概率不大时,使用比较简单的PPP协议较为合理。在因特网环境下,PPP的信息字段放入的数据是IP数据报。数据链路层的可靠传输并不能够保证网络层的传输也是可靠的。帧检验序列FCS字段可保证无差错接受。
3.PPP协议的工作过程当用户拨号接入ISP时,路由器的调制解调器对拨号做出确认,并建立一条物理连接。PC机向路由器发送一系列的LCP分组(封装成多个PPP帧)。这些分组及其响应选择一些PPP参数,和进行网络层配置,NCP给新接入的PC机分配一个临时的IP地址,使PC机成为因特网上的一个主机。通信完毕时,NCP释放网络层连接,收回原来分配出去的IP地址。接着,LCP释放数据链路层连接。最后释放的是物理层的连接。设备之间无链路链路静止链路建立鉴别网络层协议链路打开链路终止物理链路LCP链路已鉴别的LCP链路已鉴别的LCP链路和NCP链路物理层连接建立LCP配置协商鉴别成功或无需鉴别NCP配置协商链路故障或关闭请求LCP链路终止鉴别失败LCP配置协商失败4.举例路由器Router1和Router2的S0口均封装PPP协议,采用CHAP做认证,在Router1中应建立一个用户,以对端路由器主机名作为用户名,即用户名应为router2。同时在Router2中应建立一个用户,以对端路由器主机名作为用户名,即用户名应为router1。所建的这两用户的password必须相同。如图所示。PPP协议配置Router1:hostnamerouter1usernamerouter2passwordxxxinterfaceSerial0ipaddress192.200.10.1255.255.255.0clockrate1000000pppauthenticationchapRouter2:hostnamerouter2usernamerouter1passwordxxxinterfaceSerial0ipaddress192.200.10.2255.255.255.0pppauthenticationchap3.4使用广播信道的以太网
1.常用以太网接口标准
以太网接口描
述10BASE2采用细同轴电缆接口的IEEE802.310Mb/s物理层10BASE5采用粗同轴电缆接口的IEEE802.310Mb/s物理层10BASE-F采用光纤电缆接口的IEEE802.310Mb/s物理层10BASE-T采用双绞线的IEEE802.310Mb/s物理层100BASE-FX采用两个光纤的IEEE802.3100Mb/s物理层100BASE-T2采用两对3类线的IEEE802.3100Mb/s物理层100BASE-T4采用四对3、4、5类线非屏蔽双绞线的IEEE802.3100Mb/s物理层100BASE-TX采用两对5类非屏蔽双绞线或屏蔽双绞线的IEEE802.3100Mb/s物理层1000BASE-CX1000BASE-X在特制的屏蔽电缆传输的接口1000BASE-LX1000BASE-X采用单模或多模长波激光器的规格1000BASE-SX1000BASE-X采用多模短波激光器的规格1000BASE-T采用四对五类平衡电缆的1000Mb/s物理层规格电口电口采用RJ-45接口,参考第二章内容。我们常用的网线有两种:直连网线和交叉网线。现在有些物理层芯片都支持MDI和MDIX自动识别功能。直连网线定义
插头1针脚插头2针脚信号芯线颜色备注11发送白橙white-orange双绞线22发送橙orange33接收白绿white-green双绞线66接收绿green44双向蓝blue双绞线55白蓝white-blue77双向白棕white-brown双绞线88棕brown交叉网线定义
插头1针脚插头2针脚信号芯线颜色备注13发送白橙white-orange双绞线26发送橙orange31接收白绿white-green双绞线62接收绿green44双向蓝blue双绞线55白蓝white-blue77双向白棕white-brown双绞线88棕brown光口目前以太网光模块封装有GBIC、SFF、SFP好,目前推荐使用的是GBIC和SFP两种可热插拔的光模块,有850nm、1310nm、1550
nm波长,分为多模和单模,多模传输距离为275~550m,单模则可以达到2Km、10Km、15Km、40Km、70Km,甚至100Km以上。GBIC封装光模块SFP封装光模块FE自协商
对端设备接口类型自协商设备的自协商结果自协商100M
FD10M
FD10M
FD10M
HD10M
HD100M
FD100M
FD100M
HD100M
HDFD表示全双工,HD表示半双工MII接口
RMII接口
SMII接口
GMII接口
TBI接口
2.以太网数据链路层
数据链路层的两个子层为了使数据链路层能更好地适应多种局域网标准,802委员会就将局域网的数据链路层拆成两个子层:逻辑链路控制LLC(LogicalLinkControl)子层媒体接入控制MAC(MediumAccessControl)子层。与接入到传输媒体有关的内容都放在MAC子层,而LLC子层则与传输媒体无关,不管采用何种协议的局域网对LLC子层来说都是透明的
以太网的两个标准
DIXEthernetV2是世界上第一个局域网产品(以太网)的规约。IEEE的802.3标准。DIXEthernetV2标准与IEEE的802.3标准只有很小的差别,因此可以将802.3局域网简称为“以太网”。严格说来,“以太网”应当是指符合DIXEthernetV2标准的局域网MAC
帧的格式
常用的以太网MAC帧格式有两种标准:DIXEthernetV2标准IEEE的802.3标准最常用的MAC帧是以太网V2的格式。以太网MAC帧物理层MAC层1010101010101010101010101010101011前同步码帧开始定界符7字节1字节…8字节插入IP层目的地址源地址类型数据FCS6624字节46~1500IP数据报MAC帧以太网的MAC
帧格式MAC帧物理层MAC层IP层目的地址源地址类型数据FCS6624字节46~1500IP数据报以太网V2的MAC帧格式目的地址字段6字节MAC帧物理层MAC层IP层目的地址源地址类型数据FCS6624字节46~1500IP数据报以太网V2的MAC帧格式源地址字段6字节MAC帧物理层MAC层IP层目的地址源地址类型数据FCS6624字节46~1500IP数据报以太网V2的MAC帧格式类型字段2字节类型字段用来标志上一层使用的是什么协议,以便把收到的MAC帧的数据上交给上一层的这个协议。MAC帧物理层MAC层IP层目的地址源地址类型数据FCS6624字节46~1500IP数据报以太网V2的MAC帧格式数据字段46~1500
字节数据字段的正式名称是MAC
客户数据字段最小长度64字节
18字节的首部和尾部=数据字段的最小长度
MAC帧物理层MAC层IP层目的地址源地址类型数据FCS6624字节46~1500IP数据报以太网V2的MAC帧格式FCS字段4
字节当传输媒体的误码率为1108
时,MAC子层可使未检测到的差错小于11014。当数据字段的长度小于46字节时,应在数据字段的后面加入整数字节的填充字段,以保证以太网的MAC帧长不小于64字节。MAC帧物理层MAC层IP层目的地址源地址类型数据FCS6624字节46~1500IP数据报以太网V2的MAC帧格式1010101010101010101010101010101011前同步码帧开始定界符7字节1字节…8字节插入在帧的前面插入的8字节中的第一个字段共7个字节,是前同步码,用来迅速实现MAC帧的比特同步。第二个字段是帧开始定界符,表示后面的信息就是MAC帧。为了达到比特同步,在传输媒体上实际传送的要比MAC帧还多8个字节数据字段的长度与长度字段的值不一致;帧的长度不是整数个字节;用收到的帧检验序列FCS查出有差错;数据字段的长度不在46~1500字节之间。有效的MAC帧长度为64~1518字节之间。对于检查出的无效MAC帧就简单地丢弃。以太网不负责重传丢弃的帧。无效的MAC帧帧间最小间隔为9.6s,相当于96bit的发送时间。一个站在检测到总线开始空闲后,还要等待9.6s才能再次发送数据。这样做是为了使刚刚收到数据帧的站的接收缓存来得及清理,做好接收下一帧的准备。帧间最小间隔以太网的
MAC
地址
在局域网中,硬件地址又称为物理地址,或MAC地址。802
标准所说的“地址”严格地讲应当是每一个站的“名字”或标识符。但鉴于大家都早已习惯了将这种48位的“名字”称为“地址”,所以本书也采用这种习惯用法,尽管这种说法并不太严格。48位的MAC地址IEEE的注册管理机构
RA负责向厂家分配地址字段的前三个字节(即高位24位)。地址字段中的后三个字节(即低位24位)由厂家自行指派,称为扩展标识符,必须保证生产出的适配器没有重复地址。一个地址块可以生成224个不同的地址。这种48位地址称为MAC-48,它的通用名称是EUI-48。“MAC地址”实际上就是适配器地址或适配器标识符EUI-48。MAC地址的表达形式MAC地址的表达形式:XX-XX-XX-XX-XX-XX。MAC地址可以分为3种类型:单播MAC地址:这种类型的MAC地址唯一的标识了以太网上的一个终端,该地址为全球唯一的硬件地址;广播MAC地址:全1的MAC地址为广播地址(FF-FF-FF-FF-FF-FF),用来表示LAN上的所有终端设备;组播MAC地址:除广播地址外,第8bit为1的MAC地址为组播MAC地址(xxxxxxx1-xxxxxxxx-xxxxxxxx-xxxxxxxx-xxxxxxxx-xxxxxxx),用来代表LAN上的一组终端。24bit组织标识由IEEE定义24bit设备标识由厂商指定适配器检查MAC地址适配器从网络上每收到一个MAC帧就首先用硬件检查MAC帧中的MAC地址.如果是发往本站的帧则收下,然后再进行其他的处理。否则就将此帧丢弃,不再进行其他的处理。“发往本站的帧”包括以下三种帧:单播(unicast)帧(一对一)广播(broadcast)帧(一对全体)多播(multicast)帧(一对多)最初的以太网是将许多计算机都连接到一根总线上。当初认为这样的连接方法既简单又可靠,因为总线上没有有源器件。CSMA/CD协议B向
D发送数据
C
D
A
E匹配电阻(用来吸收总线上传播的信号)匹配电阻不接受不接受不接受接受B只有D接受B发送的数据以太网的广播方式发送总线上的每一个工作的计算机都能检测到B发送的数据信号。由于只有计算机D的地址与数据帧首部写入的地址一致,因此只有D才接收这个数据帧。其他所有的计算机(A,C和E)都检测到不是发送给它们的数据帧,因此就丢弃这个数据帧而不能够收下来。具有广播特性的总线上实现了一对一的通信。为了通信的简便
以太网采取了两种重要的措施采用较为灵活的无连接的工作方式,即不必先建立连接就可以直接发送数据。以太网对发送的数据帧不进行编号,也不要求对方发回确认。这样做的理由是局域网信道的质量很好,因信道质量产生差错的概率是很小的。
以太网提供的服务以太网提供的服务是不可靠的交付,即尽最大努力的交付。当目的站收到有差错的数据帧时就丢弃此帧,其他什么也不做。差错的纠正由高层来决定。如果高层发现丢失了一些数据而进行重传,但以太网并不知道这是一个重传的帧,而是当作一个新的数据帧来发送。载波监听多点接入/碰撞检测CSMA/CDCSMA/CD表示CarrierSenseMultipleAccesswithCollisionDetection。“多点接入”表示许多计算机以多点接入的方式连接在一根总线上。“载波监听”是指每一个站在发送数据之前先要检测一下总线上是否有其他计算机在发送数据,如果有,则暂时不要发送数据,以免发生碰撞。总线上并没有什么“载波”。因此,“载波监听”就是用电子技术检测总线上有没有其他计算机发送的数据信号。碰撞检测“碰撞检测”就是计算机边发送数据边检测信道上的信号电压大小。当几个站同时在总线上发送数据时,总线上的信号电压摆动值将会增大(互相叠加)。当一个站检测到的信号电压摆动值超过一定的门限值时,就认为总线上至少有两个站同时在发送数据,表明产生了碰撞。所谓“碰撞”就是发生了冲突。因此“碰撞检测”也称为“冲突检测”。检测到碰撞后在发生碰撞时,总线上传输的信号产生了严重的失真,无法从中恢复出有用的信息来。每一个正在发送数据的站,一旦发现总线上出现了碰撞,就要立即停止发送,免得继续浪费网络资源,然后等待一段随机时间后再次发送。电磁波在总线上的
有限传播速率的影响当某个站监听到总线是空闲时,也可能总线并非真正是空闲的。A向B发出的信息,要经过一定的时间后才能传送到B。B若在A发送的信息到达B之前发送自己的帧(因为这时B的载波监听检测不到A所发送的信息),则必然要在某个时间和A发送的帧发生碰撞。碰撞的结果是两个帧都变得无用。1kmABt碰撞t=2
A检测到发生碰撞
t=
B发送数据B检测到发生碰撞
t=t=0单程端到端传播时延记为
传播时延对载波监听的影响1kmABt碰撞t=
B检测到信道空闲发送数据t=
/2发生碰撞t=2
A检测到发生碰撞
t=
B发送数据B检测到发生碰撞
t=ABABAB
t=0A检测到信道空闲发送数据ABt=0t=B检测到发生碰撞停止发送STOPt=2
A检测到发生碰撞STOPAB单程端到端传播时延记为
重要特性使用CSMA/CD协议的以太网不能进行全双工通信而只能进行双向交替通信(半双工通信)。每个站在发送数据之后的一小段时间内,存在着遭遇碰撞的可能性。这种发送的不确定性使整个以太网的平均通信量远小于以太网的最高数据率。争用期最先发送数据帧的站,在发送数据帧后至多经过时间2(两倍的端到端往返时延)就可知道发送的数据帧是否遭受了碰撞。以太网的端到端往返时延2称为争用期,或碰撞窗口。经过争用期这段时间还没有检测到碰撞,才能肯定这次发送不会发生碰撞。二进制指数类型退避算法(truncatedbinaryexponentialtype)发生碰撞的站在停止发送数据后,要推迟(退避)一个随机时间才能再发送数据。确定基本退避时间,一般是取为争用期2。定义重传次数k
,k10,即
k=Min[重传次数,10]从整数集合[0,1,…,(2k
1)]中随机地取出一个数,记为r。重传所需的时延就是r倍的基本退避时间。当重传达16次仍不能成功时即丢弃该帧,并向高层报告。
争用期的长度以太网取51.2s为争用期的长度。对于10Mb/s以太网,在争用期内可发送512bit,即64字节。以太网在发送数据时,若前64字节没有发生冲突,则后续的数据就不会发生冲突。最短有效帧长如果发生冲突,就一定是在发送的前64字节之内。由于一检测到冲突就立即中止发送,这时已经发送出去的数据一定小于64字节。以太网规定了最短有效帧长为64字节,凡长度小于64字节的帧都是由于冲突而异常中止的无效帧。强化碰撞当发送数据的站一旦发现发生了碰撞时:立即停止发送数据;再继续发送若干比特的人为干扰信号(jammingsignal),以便让所有用户都知道现在已经发生了碰撞。
数据帧干扰信号TJ人为干扰信号ABTBtB发送数据A检测到冲突开始冲突信道占用时间A发送数据B也能够检测到冲突,并立即停止发送数据帧,接着就发送干扰信号。这里为了简单起见,只画出A发送干扰信号的情况。以太网流量控制
半双工以太网的反压全双工采用的PAUSE帧流控。反压(Backpressure)反压(Backpressure)是一种避免拥塞的流量控制机制,以太网在半双工模式下可采用反压进行流量控制。如果一个以太网口的接收队列发送拥塞(入口buffer中的数据超过一定的阈值),该网口可向外发送Jam信号,以模拟线路的拥塞,从而使对端的发送速率降低,达到避免拥塞丢包的效果。PAUSE流控以太网在全双工工作方式下采用PAUSE帧进行流量控制。如果一个以太网口的接收队列发生拥塞(入口buffer中的数据超过一定的阈值),且该网口支持PAUSE流控,则该网口向外发送PAUSE帧,帧中的pause-time域的值为N(0<N<=65535);链路对端的以太网口接收到这个PAUSE帧且该接口支持PAUSE流控,将在时间N(单位为512bit数据的发送时间)内停止数据的发送。这样可避免因为接收端口拥塞而导致丢包。如果接收端口的拥塞已经消除(入口buffer中的数据低于一定的阈值)而此时pause-time还没有结束,该端口将发送一个pause-time为0的PAUSE帧,通知对端开始发送数据。PAUSE帧格式
目的地址为多播地址01-80-C2-00-00-01;源地址为源端口的MAC地址;类型/长度域为88-08,表示MAC控制帧;2字节的MAC操控码为00-01,表示PAUSE帧2字节的pause时间,指示对端端口暂停发送的时间,该域为0表示通知对端暂停发送的端口可以开始发送数据。3.5以太网交换传统以太网最初是使用粗同轴电缆,后来演进到使用比较便宜的细同轴电缆,最后发展为使用更便宜和更灵活的双绞线。这种以太网采用星形拓扑,在星形的中心则增加了一种可靠性非常高的设备,叫做集线器(hub)使用集线器的双绞线以太网集线器两对双绞线站点RJ-45插头以太网在局域网中的统治地位10BASE-T的通信距离稍短,每个站到集线器的距离不超过100m。这种10Mb/s速率的无屏蔽双绞线星形网的出现,既降低了成本,又提高了可靠性。10BASE-T双绞线以太网的出现,是局域网发展史上的一个非常重要的里程碑,它为以太网在局域网中的统治地位奠定了牢固的基础。集线器的一些特点集线器是使用电子器件来模拟实际电缆线的工作,因此整个系统仍然像一个传统的以太网那样运行。使用集线器的以太网在逻辑上仍是一个总线网,各工作站使用的还是CSMA/CD
协议,并共享逻辑上的总线。集线器很像一个多接口的转发器,工作在物理层。优点使原来属于不同碰撞域的局域网上的计算机能够进行跨碰撞域的通信。扩大了局域网覆盖的地理范围。缺点碰撞域增大了,但总的吞吐量并未提高。如果不同的碰撞域使用不同的数据率,那么就不能用集线器将它们互连起来。
用集线器扩展局域网用集线器组成更大的局域网
都在一个碰撞域中一系三系二系主干集线器一个更大的碰撞域碰撞域在数据链路层扩展局域网是使用网桥。网桥工作在数据链路层,它根据MAC帧的目的地址对收到的帧进行转发。网桥具有过滤帧的功能。当网桥收到一个帧时,并不是向所有的接口转发此帧,而是先检查此帧的目的MAC地址,然后再确定将该帧转发到哪一个接口3.5.1网桥
--在数据链路层扩展局域网
网桥的内部结构站表接口管理软件网桥协议实体缓存接口1接口2①②③网段B网段A1112①③⑤2②④⑥2站地址接口网桥网桥④⑤⑥接口1接口212用户层IPMAC站1用户层IPMAC站2物理层网桥1网桥2AB用户数据IP-HMAC-HMAC-TDL-HDL-T
物理层DLRMAC物理层物理层DLRMAC物理层物理层LANLAN两个网桥之间还可使用一段点到点链路网桥不改变它转发的帧的源地址若从A发出的帧从接口x进入了某网桥,那么从这个接口出发沿相反方向一定可把一个帧传送到A。网桥每收到一个帧,就记下其源地址和进入网桥的接口,作为转发表中的一个项目。在建立转发表时是把帧首部中的源地址写在“地址”这一栏的下面。在转发帧时,则是根据收到的帧首部中的目的地址来转发的。这时就把在“地址”栏下面已经记下的源地址当作目的地址,而把记下的进入接口当作转发接口。网桥应当按照以下自学习算法
处理收到的帧和建立转发表
地址接口转发表的建立过程举例B2B1ABCDEF1212地址接口…………B1B→AA→BA1F→CF2A→BA1F→CF2在网桥的转发表中写入的三个信息:站地址:登记收到的帧的源MAC地址;端口:登记收到的帧进入该网桥的端口号;时间:登记收到的帧进入该网桥的时间;这是因为以太网的拓扑可能经常会发生变化,站点也可能会更换适配器(这就改变了站点的地址)。另外,以太网上的工作站并非总是接通电源的。把每个帧到达网桥的时间登记下来,就可以在转发表中只保留网络拓扑的最新状态信息。这样就使得网桥中的转发表能反映当前网络的最新拓扑状态。网桥的转发表网桥的工作原理
--自学习和转发帧网桥收到一帧后先进行自学习。查找转发表中与收到帧的源地址有无相匹配的项目。如没有,就在转发表中增加一个项目(源地址、进入的接口和时间)。如有,则把原有的项目进行更新。转发帧。查找转发表中与收到帧的目的地址有无相匹配的项目。如没有,则通过所有其他接口(但进入网桥的接口除外)按进行转发。如有,则按转发表中给出的接口进行转发。若转发表中给出的接口就是该帧进入网桥的接口,则应丢弃这个帧(因为这时不需要经过网桥进行转发)。过滤通信量。扩大了物理范围。提高了可靠性。可互连不同物理层、不同MAC子层和不同速率(如10Mb/s和100Mb/s以太网)的局域网。使用网桥带来的好处网桥使各网段成为
隔离开的碰撞域B2B1碰撞域碰撞域碰撞域ABCDEF存储转发增加了时延。在MAC子层并没有流量控制功能。具有不同MAC子层的网段桥接在一起时时延更大。网桥只适合于用户数不太多(不超过几百个)和通信量不太大的局域网,否则有时还会因传播过多的广播信息而产生网络拥塞。这就是所谓的广播风暴。使用网桥带来的缺点1990年问世的交换式集线器(switchinghub),可明显地提高局域网的性能。交换式集线器常称为以太网交换机(switch)或第二层交换机(表明此交换机工作在数据链路层)。以太网交换机通常都有十几个接口。因此,以太网交换机实质上就是一个多接口的网桥,可见交换机工作在数据链路层。3.5.2以太网交换机
以太网交换机的每个接口都直接与主机相连,并且一般都工作在全双工方式。交换机能同时连通许多对的接口,使每一对相互通信的主机都能像独占通信媒体那样,进行无碰撞地传输数据。以太网交换机由于使用了专用的交换结构芯片,其交换速率就较高。以太网交换机的特点对于普通10Mb/s的共享式以太网,若共有N个用户,则每个用户占有的平均带宽只有总带宽(10Mb/s)的N分之一。使用以太网交换机时,虽然在每个接口到主机的带宽还是10Mb/s,但由于一个用户在通信时是独占而不是和其他网络用户共享传输媒体的带宽,因此对于拥有N对接口的交换机的总容量为N10Mb/s。这正是交换机的最大优点。独占传输媒体的带宽用以太网交换机扩展局域网一系三系二系10BASE-T至因特网100Mb/s100Mb/s100Mb/s万维网服务器电子邮件服务器以太网交换机路由器以太网交换机工作原理
以太网交换机是一种基于MAC地址识别,能完成封装转发数据包功能的网络设备。交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。以太网交换机的转发涉及到两个关键的线程:地址学习线程报文转发线程地址学习线程1)交换机接收网段上的所有数据帧,利用接收数据帧中的源MAC地址来建立MAC地址表;2)端口移动机制:交换机如果发现一个包文的入端口和报文中源MAC地址的所在端口不同,就产生端口移动,将MAC地址重新学习到新的端口;3)地址老化机制:如果交换机在很长一段时间之内没有收到某台主机发出的报文,在该主机对应的MAC地址就会被删除,等下次报文来的时候会重新学习。注意:老化也是根据源MAC地址进行老化。报文转发线程
1)交换机在MAC地址表中查找数据帧中的目的MAC地址,如果找到,就将该数据帧发送到相应的端口,如果找不到,就向所有的端口发送;2)如果交换机收到的报文中源MAC地址和目的MAC地址所在的端口相同,则丢弃该报文;3)交换机向入端口以外的其它所有端口转发广播报文。3.6生成树协议STP在避免桥接环路的同时又要保持冗余路径,为此人们开发了生成树协议(SpanningTreeProtocol--STP)。顾名思义,就是要把环型拓扑生成树型拓扑,因为环型拓扑产生转发的广播报文在网络中不断地兜圈子,导致网络阻塞,而树型拓扑是无环的。如图所示。生成树协议有两个标准,IEEE802.1D,就是通常所说的生成树协议;IEEE802.1W,称为快速生成树协议(RapidSpanningTreeProtocol--RSTP)。网络回路转发的帧在网络中不断地兜圈子。网络资源白白消耗了互连在一起的网桥在进行彼此通信后,就能找出原来的网络拓扑的一个子集。在这个子集里,整个连通的网络中不存在回路,即在任何两个站之间只有一条路径。为了避免产生转发的帧在网络中不断地兜圈子。为了得出能够反映网络拓扑发生变化时的生成树,在生成树上的根网桥每隔一段时间还要对生成树的拓扑进行更新。生成树的得出端口状态
交换机的端口处于不同的状态有着不同的功能,这些状态与生成树协议的运行及交换机的工作原理有着重要的关系,端口状态及转换方向如图3-30所示。阻塞状态(Blocking)--只侦听BPDU帧,不转发数据帧。侦听状态(Listening)--只侦听数据帧,不转发数据帧。学习状态(Learning)--学习地址信息,不转发数据帧。转发状态(Forwarding)--学习地址信息,并转发帧。无效状态(Disabled)--不进行转发,不侦听BPDU帧。BPDU帧格式每台交换机向网络中发送一种称为BPDU(BridgeProtocolDataUnit)的数据帧。如果某台交换机能够从两条或多条链路上收到同一台交换机的BPDU,则说明它们之间存在着冗余路径,就会产生环路。当存在环路时交换机使用生成树算法最终选择一条链路传递数据,而通过把某些相关的端口置于阻塞(blocking)状态,虚拟地把其他的冗余链路断开达到避免环路的目的。一旦当前正在使用的链路出现故障,就会把某个阻塞的端口打开接替原来的链路工作,这样既提供了冗余链路又避免了环路。BPDU帧格式RootID:作为根桥的交换机的ID号;Pathcost:路径开销;BridgeID:发送该BPDU的交换机ID号;BridgeID用来标志交换机身份,它由交换机的优先级和交换机的MAC地址(MACaddres
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体育场馆饮用水管理制度
- 2024至2030年中国自动装箱机数据监测研究报告
- 2024至2030年中国玻璃冰垫行业投资前景及策略咨询研究报告
- 2024至2030年中国滚塑驾驶室顶棚数据监测研究报告
- 2024至2030年中国双面抗UV中空板数据监测研究报告
- 2024年中国酒酿碗市场调查研究报告
- 2024年中国桑拿用品市场调查研究报告
- 新工人入场安全培训试题带答案(满分必刷)
- 1楼档案室装饰工程施工组织设计方案
- 焙烤食品制造中的生产线自动化技术应用考核试卷
- 石家庄市第四十中学2022-2023学年七年级上学期期末生物试题【带答案】
- 光纤通信工程合同协议
- 医学美容技术专业《中医学基础》课程标准
- 城市消防救援协同机制优化
- 环境、社会和公司治理(ESG)报告的会计影响
- DL-T5394-2021电力工程地下金属构筑物防腐技术导则
- 2024年郑州市金水区人民法院执法勤务类一级警员招录1人《行政职业能力测验》高频考点、难点(答案详解版)
- 初中物理教育教学案例分析(3篇模板)
- 2024年武汉市东西湖自来水公司招聘笔试参考题库附带答案详解
- 2024届四川成都九年级上册期末质量检测九区联考语文试题(含答案)
- 2024-劳务合同与雇佣合同标准版可打印
评论
0/150
提交评论