版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元2.一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正确的结论有:A.4个 B.3个 C.2个 D.1个3.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2) B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12) D.a(x+6)(x﹣2)4.已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为()A.1 B.2 C.3 D.45.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100° B.80° C.60° D.50°6.的相反数是A. B.2 C. D.7.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()A. B. C. D.8.若关于的一元二次方程有两个不相等的实数根,则的取值范围()A. B. C.且 D.9.已知,则的值是A.60 B.64 C.66 D.7210.当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a511.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是()学生数(人)5814194时间(小时)678910A.14,9 B.9,9 C.9,8 D.8,912.下列实数中,无理数是()A.3.14 B.1.01001 C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=1,则S△ADF的值为_____.14.正多边形的一个外角是,则这个多边形的内角和的度数是___________________.15.在△ABC中,AB=13cm,AC=10cm,BC边上的高为11cm,则△ABC的面积为______cm1.16.如图,在△ABC中,DE∥BC,,则=_____.17.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=_____.18.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求一次函数y=kx+b和y=的表达式;(2)已知点C在x轴上,且△ABC的面积是8,求此时点C的坐标;(3)反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向右平移3个单位长度,得曲线C2,则C1平移至C2处所扫过的面积是_________.(直接写出答案)20.(6分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?21.(6分)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.证明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的长,22.(8分)已知:如图,在菱形中,点,,分别为,,的中点,连接,,,.求证:;当与满足什么关系时,四边形是正方形?请说明理由.23.(8分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.24.(10分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图.(1)测试不合格人数的中位数是.(2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图.25.(10分)如图,小明的家在某住宅楼AB的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43°,顶部D的仰角是25°,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米).26.(12分)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.27.(12分)先化简,再求值:(﹣a)÷(1+),其中a是不等式﹣<a<的整数解.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】
A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.2、B【解析】试题解析:①∵二次函数的图象的开口向下,∴a<0,∵二次函数的图象y轴的交点在y轴的正半轴上,∴c>0,∵二次函数图象的对称轴是直线x=1,∴2a+b=0,b>0∴abc<0,故正确;②∵抛物线与x轴有两个交点,故正确;③∵二次函数图象的对称轴是直线x=1,∴抛物线上x=0时的点与当x=2时的点对称,即当x=2时,y>0∴4a+2b+c>0,故错误;④∵二次函数图象的对称轴是直线x=1,∴2a+b=0,故正确.综上所述,正确的结论有3个.故选B.3、A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案为a(x﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.4、C【解析】
先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.【详解】去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情况有两种:(1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.解得a=.当a=时,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.(i)当x=1时,代入①式得3﹣a=1,即a=3.当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.(ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个.故选C.【点睛】考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.5、B【解析】试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.故选:B6、B【解析】
根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.7、D【解析】
两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可.【详解】因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)==.故答案选:D.【点睛】本题考查了几何概率,解题的关键是熟练的掌握几何概率的相关知识点.8、C【解析】
根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解之即可得出结论.【详解】解:∵关于x的一元二次方程有两个不相等的实数根,∴,解得:k<1且k≠1.故选:C.【点睛】本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a的一元一次不等式组是解题的关键.9、A【解析】
将代入原式,计算可得.【详解】解:当时,原式,故选A.【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式.10、A【解析】
直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.【详解】A选项:a0=1,正确;B选项:a﹣1=,故此选项错误;C选项:(﹣a)2=a2,故此选项错误;D选项:(a2)3=a6,故此选项错误;故选A.【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算,正确掌握相关运算法则是解题关键.11、C【解析】
解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人,∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,∴中位数为2.故选C.【点睛】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.12、C【解析】
先把能化简的数化简,然后根据无理数的定义逐一判断即可得.【详解】A、3.14是有理数;B、1.01001是有理数;C、是无理数;D、是分数,为有理数;故选C.【点睛】本题主要考查无理数的定义,属于简单题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、5【解析】
由3AE=2EB,和EF∥BC,证明△AEF∽△ABC,得S△AEFS△ABC=425,结合S△AEF=1,可知S△ADC=S△ABC=254,再由AFFC【详解】解:∵3AE=2EB,设AE=2a,BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴S△AEFS△ABC=(AEAB)2=(∵S△AEF=1,∴S△ABC=254∵四边形ABCD为平行四边形,∴S∵EF∥BC,∴AFFC=AEBE=2a∴S△ADFS△CDF∴S△ADF=25S△ADC=5故答案是:5【点睛】本题考查了图形的相似和平行线分线段成比例定理,中等难度,找到相似比是解题关键.14、540°【解析】
根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.考点:多边形的内角和与外角和15、2或2.【解析】试题分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD=16,CD=5,再由图形求出BC,在锐角三角形中,BC=BD+CD=2,在钝角三角形中,BC=CD-BD=2.故答案为2或2.考点:勾股定理16、【解析】
先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题.【详解】解:∵DE∥BC,,∴,由平行条件易证△ADE△ABC,∴S△ADE:S△ABC=1:9,∴=.【点睛】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.17、75°【解析】试题解析:∵直线l1∥l2,∴故答案为18、﹣1【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因为k≠0,所以k的值为﹣1.故答案为:﹣1.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1),;(2)点C的坐标为或;(3)2.【解析】试题分析:(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出a值,从而得出反比例函数解析式;由勾股定理得出OA的长度从而得出点B的坐标,由点A、B的坐标利用待定系数法即可求出直线AB的解析式;
(2)设点C的坐标为(m,0),令直线AB与x轴的交点为D,根据三角形的面积公式结合△ABC的面积是8,可得出关于m的含绝对值符号的一元一次方程,解方程即可得出m值,从而得出点C的坐标;
(3)设点E的横坐标为1,点F的横坐标为6,点M、N分别对应点E、F,根据反比例函数解析式以及平移的性质找出点E、F、M、N的坐标,根据EM∥FN,且EM=FN,可得出四边形EMNF为平行四边形,再根据平行四边形的面积公式求出平行四边形EMNF的面积S,根据平移的性质即可得出C1平移至C2处所扫过的面积正好为S.试题解析:(1)∵点A(4,3)在反比例函数y=的图象上,∴a=4×3=12,∴反比例函数解析式为y=;∵OA==1,OA=OB,点B在y轴负半轴上,∴点B(0,﹣1).把点A(4,3)、B(0,﹣1)代入y=kx+b中,得:,解得:,∴一次函数的解析式为y=2x﹣1.(2)设点C的坐标为(m,0),令直线AB与x轴的交点为D,如图1所示.令y=2x﹣1中y=0,则x=,∴D(,0),∴S△ABC=CD•(yA﹣yB)=|m﹣|×[3﹣(﹣1)]=8,解得:m=或m=.故当△ABC的面积是8时,点C的坐标为(,0)或(,0).(3)设点E的横坐标为1,点F的横坐标为6,点M、N分别对应点E、F,如图2所示.令y=中x=1,则y=12,∴E(1,12),;令y=中x=4,则y=3,∴F(4,3),∵EM∥FN,且EM=FN,∴四边形EMNF为平行四边形,∴S=EM•(yE﹣yF)=3×(12﹣3)=2.C1平移至C2处所扫过的面积正好为平行四边形EMNF的面积.故答案为2.【点睛】运用了反比例函数图象上点的坐标特征、待定系数法求函数解析式、三角形的面积以及平行四边形的面积,解题的关键是:(1)利用待定系数法求出函数解析式;(2)找出关于m的含绝对值符号的一元一次方程;(3)求出平行四边形EMNF的面积.本题属于中档题,难度不小,解决(3)时,巧妙的借助平行四边的面积公式求出C1平移至C2处所扫过的面积,此处要注意数形结合的重要性.20、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】
(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.21、(1)见解析;(2)EC=1.【解析】
(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.【详解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.22、见解析【解析】
(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)证明△BCE≌△DCF即可;
(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF是正方形.【详解】(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.【点睛】本题考查了全等三角形、菱形、正方形的性质,解题的关键是熟练的掌握菱形、正方形、全等三角形的性质.23、(1)详见解析;(2)72°;(3)3【解析】
(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;(2)用360°乘以C类别人数所占比例即可得;(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.【详解】解:(1)∵抽查的总人数为:20÷40%=50(人)∴C类人数为:50-5-20-15=10(人)补全条形统计图如下:(2)“碳酸饮料”所在的扇形的圆心角度数为:10(3)设男生为A1、A2,女生为B1、B画树状图得:∴恰好抽到一男一女的情况共有12种,分别是A∴P(恰好抽到一男一女)=12【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、(1)1;(2)这两次测试的平均增长率为20%;(3)55%.【解析】
(1)将四次测试结果排序,结合中位数的定义即可求出结论;(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数÷参加测试的总人数×100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解.【详解】解:(1)将四次测试结果排序,得:30,40,50,60,∴测试不合格人数的中位数是(40+50)÷2=1.故答案为1;(2)∵每次测试不合格人数的平均数为(60+40+30+50)÷4=1(人),∴第四次测试合格人数为1×2﹣18=72(人).设这两次测试的平均增长率为x,根据题意得:50(1+x)2=72,解得:x1=0.2=2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公积金个人贷款合同模板
- 银行授信保证合同模板
- 苗木供应商招募公告
- 标准家庭服务合同案例
- 沼气工程可行性研究
- 租房协议合同的签订技巧与流程
- 安全栏杆采购合同
- 渔业产品买卖合同
- 在线电子购销合同制作
- 药材进出口合同
- 福建省厦门市2023-2024学年高二上学期期考化学试题(含答案)
- 广东省六校联考2024-2025学年高二上学期12月月考试题 英语 含答案
- 人教版高一地理必修一期末试卷
- 山东省临沂市2023-2024学年高二上学期1月期末地理试题 附答案
- 2024-2025学年北师大版九年级上册数学期末测试综合练习题(原卷版)-A4
- 导管室工作总结课件
- 2025北京语言大学新编长聘人员招聘21人笔试备考试题及答案解析
- 派出所户籍业务培训
- 2025届四川省德阳市重点中学物理高一第一学期期末统考试题含解析
- 二年级上册语文期末总复习
- GB/T 44811-2024物联网数据质量评价方法
评论
0/150
提交评论