高中数列方法与解题技巧(学生版)_第1页
高中数列方法与解题技巧(学生版)_第2页
高中数列方法与解题技巧(学生版)_第3页
高中数列方法与解题技巧(学生版)_第4页
高中数列方法与解题技巧(学生版)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数列方法与解题技巧一、数列求通项的10种方法二、数列求和的7种方法三、6道高考数列大题数列求通项的10种方法一、公式法例1已知数列满足,,求数列的通项公式.方法:等式两边同时除以,构造成等差数列,利用等差数列公式求解。形式:项系数与后面所加项底数相同二、累加法例2已知数列满足,求数列的通项公式.方法:将上述各式累加,中间式子首尾项相抵可求得形式:;要求、的系数均为1,对于不为1时,需除以系数化为1。例3已知数列满足,求数列的通项公式.方法:同例2已知数列满足,求数列的通项公式.方法:等式的两边同除以3,,将系数化为1,再用累加法。三、累乘法例5已知数列满足,求数列的通项公式.。方法:将上述各式累乘,消除中间各项,可求得形式:;的关于n的倍数关系。例6已知数列满足,求的通项公式.方法:本题与例5不同之处是想要通过错位相减法,求出的递推关系,然后才能用累成法求。四、待定系数法(X,Y,Z法)例7已知数列满足,求数列的通项公式.方法:构造数列。形式:例8已知数列满足,求数列的通项公式.方法:构造数列,本题中递推关系中含常数4,对于常数项,可看成是。对于不同形式的n要设不同的参数。例9已知数列满足,求数列的通项公式.方法:同例8,但它的参数要设3个。五、对数变换法例10已知数列满足,,求数列的通项公式.方法:等式两边同取对数得到,然后可利用待定系数法或者累加法求之。形式:,其中对与的高次方特别有效。六、迭代法例11已知数列满足,求数列的通项公式.再把它与原数列相加,就可以得到n个.[例5]求证:[例6]求的值四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7]求数列的前n项和:,…[例8]求数列{n(n+1)(2n+1)}的前n项和.五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1)(2)(3)(4)(5)(6)[例9]求数列的前n项和.[例10]在数列{an}中,,又,求数列{bn}的前n项的和.[例11]求证:六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.[例13]数列{an}:,求S2002.[例14]在各项均为正数的等比数列中,若的值.七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.[例15]求之和.[例16]已知数列{an}:的值.四川高考理科数学试题2008年--2013年数列解答题设数列的前项和为,已知(Ⅰ)证明:当时,是等比数列;(Ⅱ)求的通项公式设数列的前项和为,对任意的正整数,都有成立,记。(=1\*ROMANI)求数列的通项公式;(=2\*ROMANII)记,设数列的前项和为,求证:对任意正整数都有;(=3\*ROMANIII)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m-1+a2n-1=2am+n-1+2(m-n)2(Ⅰ)求a3,a5;(Ⅱ)设bn=a2n+1-a2n-1(n∈N*),证明:{bn}是等差数列;(Ⅲ)设cn=(an+1-an)qn-1(q≠0,n∈N*),求数列{cn}的前n项和Sn.设为非零实数,(1)写出并判断是否为等比数列。若是,给出证明;若不是,说明理由;(II)设,求数列的前n项和.已

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论