版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一部分:事件与概率
(定义:基本事件、样本事件、复合事件、
Au8=>BuA
复合事件、S、①
性质<A^B=>AuB=B,AB=A
AuBAUAD8,ABUA
关系<A=B交换
A与5互斥(AB=①)结合
事件〈
分配n
AD8(至少)
运算律<A-
AnB(都)UA
/=1_
/=“l
运算A-B^AB对偶,U-
—[ALJB=SA
A=B<=><AA
An5=0li=lI=I
(公理化定义:非负、规范、
古典:P(A)='=.包含的基本事件数(排列、组合)
IJnS中基本事件的的总数
直接计算4
几何•P(A]='白勺'则度
儿仃.()一S的测度
尸(5)=1,尸(①)=0
加法公式:P(AuB)=P(A)+P(B)-P(AB)o
间接计算(特别地=①时P(4uB)=P(A)+P(B))
(关系)
Bu4时尸=P(A)-P(B)
减法公式:P(A-B)-P(A)-P(AB)=><
当A=0时,P(耳)=1-P(B)
概率
(乘法公式:P(AB)=P(A)P(B/A)
定义尸@A)=瑞
计算
根据题意分析
乘法公式
全概率公式:P(A)=£P(4)P(A|B,)
条件概率"P(吗)
贝叶斯公式:P(B/4)=~;~------」
之P(瓦)P(A|瓦)
i=\
独立性:P(AB)=P(A)P(8)=>性质
A,4,…,4独立,则丁鼠,…,£,&m+l),…4“独立
1
第二部分:随机变量与分布函数
分布律:P{X=x,}=Pi,i=1,2,...
P,N0
分布律性质节
离散型〈乙P,=l
IJ=1
三个常见分布X~W〃,p乂几何分布、超几何分布)
<.X~1㈤
分布函数:F(x)=P(X<x)
不减项<x2=>F(%])<F(X)
般2
一维随性质,规范04万(x)41,F(+oo)=1,F(-oo)=1
机变量右连续F(x+0)=F(x)
(概率密度函数:F(x)=['f(u\lu
J-oo
Vxe7?,/(x)>0
性质
f{x)dx=\
连续型J—00
X~u(a,b)
三个常见分布X~NLQ2)
X~e(/l)
随机变量函数的分布:已知/Kx),y=g(x),求/“y)
注:考研大纲中规定参数为;1>0的指数分布X其密度函数为
〜Ax"0,对应的分布函数为F(x)=(1一,A二xX>Q'
0,x<0.[0,x<0.
期望、方差为Mx)=:、。⑻/
2
‘分布律:p{x=Xj,y=力}==1,2,…
Pi.jN°
性质<+8+8
离散型〈7=1j=l
尸{x=玉}=ZPij
边际分布
尸卜=匕}=£〃”
/=!
分布函数:F(x,=P(X<x,Y<y)
对每个变元单调不减;
一般<
性质F(x,-oo)=F(-oo,y)=F(-00,-00)=0,F(+oo,+oo)=1;
对每个变元右连续;
VX1</,必<为,/(尤2,,2)一厂(无22)一尸(々,凹)+/(尤1,%)20。
概率密度函数:F(x,y)=「「f(u,v)dudv
二维随J-00J-x
fVx,ye/?,/(x,y)>0
机变量
贞"匚)必力=1
/x(x)=J:7(x,yMy
边际密度
/y(y)=「/(x'y)dx
连续型J—co
Aqx(yIx)=(/x(x)>0)
NA
条件密度
&y(x|y)=密伉(>)>o)
fY\y)
概率计算:P{(X,y)eG}=JJf(x,y)dxdy
随机向量函数的分布:已知/x,y(x,y),z=g(x,y),求/z(z).
(X+K(、max(X,y)、min(xM)
一般:
FyY(x,y)=Fx(x)FY(y),Vx,y€R
独立性离散:尸
(X=x;,7=)=P(X=xt)P\Y=x),i,j=1,2,--•
连续:fx.r(x,y)=AWA(y),TX,yeR
(x,y)~N仇,生q;,,夕)则x与y相互独立o夕=o
3
第三部分:数字特征与极限定理
£(*3)=卒方,
+x
A离散E(X)=Zx,P(X=x)x马y独立=>E(XY)=£1(%)-E(Y)
期望〈/=!
2
连续E(X)=^\f^x)dx性质-£>(CX)=CZ)(X)
D(X+C)=Z)(X)
方差:D(X)=£|(X-£(X))2]
L>(x±y)=£>(%)+L>(Y)±2Cov(X,Y)
.x与海立=>D(X±y)=£>(%)+D(Y)
[p《x-Mx]*”叩
一维随/切比雪夫不等式£,、
机变量\P(|X-<£)>1
X~8(1,p)n£(X)=p,D(X)=〃。-P)
X~B(n,p)=>E(X)=np,D(X)=np(l-p)
X-^-(2)E(x)=2,D(x)=2
常见分布
X~U(4,b)nE(X)=^,Z)(X)=^t
的期望方差.
X~N(//,b2)nE(X)=〃,O(X)=,
IX~e(/1)=MX)=:,O(X)T
'协方差c°y(x,y)=可俨一后⑻心—E(y))]=E(xy)—E(x).E(y)
相关系数0xy=f吸I
fc^x,±x2,y)=cov(xl,r)±c<?v(x2,r)
二维随Cov(aX,bY)=abCov(X,Y)
机变量'
|Px3<UPXJ=1=叩=aX+.)=1
性质=0
PXY、
c»v(x,y)=o
不相关="E(xr)=E(x)-E(r)
D(x+y)=D(x)+o(y)
jKO
离散E[g(X)]=£g(x)P(X=%,)
一维i=l
连续E[g(X)]=广g(x)fx(%「
随机变量、v—00
函数的期望'+00+8/、/\
离散瓦g(x,y)]=,x)P(X=七,y=为)
二维<i=lj=\
连续E[g(x,y)]=J;]二g(x,y)/x)(%,
4
(及fp^Bernoulli]
—-〃*二0
〃TOOn)
(n(nn\
",fx,」fE(Xj
X],X2,…两两不相关
nlimP上」---->£=0---->上1(切比雪夫)
(“TOO〃
大数DXZ)<C,z=1,2,-nn-----------n
定律
(〃\
Ex:p
…独立同分布
X1,X2,-----(辛钦)
E(X)=〃存在n"吧-——〃之£=0
nn
X1,X2,…独立同分布
-①(x)^Lindeberg-Levy)
E(X)O(Xj存在
中心极限定理
/\
X-np
X〜B(n,p)nlimP<x=①(x)(DeMoivre-Laplace)
、/npQ
数理统计:估计与假设检验
‘总体、个体
样本(X1,X2,…,xj样本容量〃
样本观察值(外,》2,…,X”)
基本概念・
P(X1=xt,X2=x2,---,Xn=x„)=pjP(X=xj
样本的分布■i=i
fXl.X2.-,Xn=11fX(xj
i=\
样本平均值X,
样本方差S2=,_之(X:-外、样本标准差5=斤
〃一5
统计量样本A阶(原点)矩A*=-之X,*、样本都介中心矩2=-¥(%,.-X)
«zr
经验分布函数F,(x)=X],X,,X,,中不大于x的频率(X/xeR)
——(J2
EX=N,DX=——
数字特征n
ES2=a2
5
构造:z2=£x,2~72(〃),其中诸X,独立,且X,~%(()/)
/2分布,Ex2=n,Dx~=2〃
22m2且虫立n%」+^2~篦+〃)
Zi~Z(Xz2~%2(",32%2(,
.分位数:2(〃),尸
Z~%2(%2<%/(〃))=a,0<a<1
构造:7=/X其中X〜N(O,l),y~%2("),且独立
1Y/n
f分布渐进分布:nf8时,,(〃底J渐进分布为N((),l)
抽样分布I
分位数:T〜,(〃),P(T<ta(〃))=CW-。(九)=-ta(n)
构造:F=-X/二〜户(W),其中X〜力2s1y〜力2(九),且独立
Y/n2
户分布VF~广(〃7,n)=>—〜户(〃,771)
F
分位数:F~〃),P(FvFa(m,〃))=c;Fx_a(/??,n)=——---r
Z_(X-P)-(〃|-〃2)
L—I-------~N(O,1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临沂职业学院《篆刻2》2023-2024学年第一学期期末试卷
- 江西应用工程职业学院《建筑设备自动化系统》2023-2024学年第一学期期末试卷
- 湖北开放职业学院《城市设计B》2023-2024学年第一学期期末试卷
- 遵义职业技术学院《中国古代文学5》2023-2024学年第一学期期末试卷
- 株洲师范高等专科学校《非遗影像策划与制作》2023-2024学年第一学期期末试卷
- 重庆青年职业技术学院《数据结构及算法》2023-2024学年第一学期期末试卷
- 株洲师范高等专科学校《重点传染病防治知识规培》2023-2024学年第一学期期末试卷
- 浙江外国语学院《课程与教学基础》2023-2024学年第一学期期末试卷
- 浙江工贸职业技术学院《建筑美术Ⅲ》2023-2024学年第一学期期末试卷
- 中南林业科技大学《物理化学(1)》2023-2024学年第一学期期末试卷
- 2024-2030年铝合金粉行业市场现状供需分析及重点企业投资评估规划分析研究报告
- JGJ106-2014建筑基桩检测技术规范
- 植入(介入)性医疗器械管理制度
- 辽宁农业职业技术学院2024年单招复习题库(普通高中毕业生)-数学(130道)
- 内镜下粘膜剥离术(ESD)护理要点及健康教育课件
- 2024年民族宗教理论政策知识竞赛考试题库及答案
- 项目七电子商务消费者权益保护的法律法规
- 品质经理工作总结
- 供电抢修述职报告
- 集成电路设计工艺节点演进趋势
- 新型电力系统简介演示
评论
0/150
提交评论