2023年黑龙江省伊春市数学八下期末调研试题含解析_第1页
2023年黑龙江省伊春市数学八下期末调研试题含解析_第2页
2023年黑龙江省伊春市数学八下期末调研试题含解析_第3页
2023年黑龙江省伊春市数学八下期末调研试题含解析_第4页
2023年黑龙江省伊春市数学八下期末调研试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列等式一定成立的是()A.9-4=5 B.52.直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)3.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB4.若关于的一元二次方程的一个根是0,则的值是()A.1 B.-1 C.1或-1 D.5.如图,以正方形的边为一边向内作等边,连结,则的度数为()A. B. C. D.6.菱形具有平行四边形不一定具有的特征是()A.对角线互相垂直 B.对角相等 C.对角线互相平分 D.对边相等7.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13 B.14 C.15 D.168.下列四组线段中,不能构成直角三角形的是()A.4,5,6 B.6,8,10 C.7,24,25 D.5,3,49.如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使得△MNP为等腰直角三角形,则符合条件的点P有(提示:直角三角形斜边上的中线等于斜边的一半)()A.2个 B.3个 C.4个 D.5个10.下面式子是二次根式的是()A.a2+1 B.333 C.-1二、填空题(每小题3分,共24分)11.如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于______.12.如图,直线AB,IL,JK,DC,相互平行,直线AD,IJ、LK、BC互相平行,四边形ABCD面积为18,四边形EFGH面积为11,则四边形IJKL面积为____.13.计算:______.14.已知一组数据1,a,3,6,7,它的平均数是4,这组数据的方差是_____.15.在平面直角坐标系中,函数()与()的图象相交于点M(3,4),N(-4,-3),则不等式的解集为__________.16.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,若再添加一个条件,就可得平行四边形ABCD是矩形,则你添加的条件是_____.17.如图,分别以的斜边,直角边为边向外作等边和,为的中点,,相交于点.若∠BAC=30°,下列结论:①;②四边形为平行四边形;③;④.其中正确结论的序号是______.18.计算-的结果是_________.三、解答题(共66分)19.(10分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF(1)求证:BE=DF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.20.(6分)如图,△ABC中,AB=BC=5cm,AC=6cm,点P从顶点B出发,沿B→C→A以每秒1cm的速度匀速运动到A点,设运动时间为x秒,BP长度为ycm.某学习小组对函数y随自变量x的变化而变化的规律进行了探究.下面是他们的探究过程,请补充完整:(1)通过取点,画图,测量,得到了x(秒)与y(cm)的几组对应值:x01234567891011y0.01.02.03.04.04.54.144.55.0要求:补全表格中相关数值(保留一位小数);(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当x约为______时,BP=CP.21.(6分)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?22.(8分)化简或解方程:(1)化简:(2)先化简再求值:,其中.(3)解分式方程:.23.(8分)某学校开展课外体育活动,决定开设A:篮球、B:羽毛球、C:跑步、D:乒乓球这四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;(2)请把条形统计图补充完整;(3)若该校有学生2500人,请根据样本估计全校最喜欢跑步的学生人数约是多少?24.(8分)有下列命题①一组对边平行,一组对角相等的四边形是平行四边形.②两组对角分别相等的四边形是平行四边形.③一组对边相等,一组对角相等的四边形是平行四边形.④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.(1)上述四个命题中,是真命题的是(填写序号);(2)请选择一个真命题进行证明.(写出已知、求证,并完成证明)已知:.求证:.证明:25.(10分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,且AE=CF,顺次连接B、E、D,F.求证:四边形BEDF是平行四边形.26.(10分)某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A、B、C、D、E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、众数和中位数;(3)估计该单位750名职工共捐书多少本?

参考答案一、选择题(每小题3分,共30分)1、B【解析】A.9-4=3-2=1,则原计算错误;B.5×3=15,正确;C.92、C【解析】

作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.直线y=x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直线CD′的解析式为y=﹣x﹣1.令y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣,所以点P的坐标为(﹣,0).故答案选C.考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.3、C【解析】

A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选C.4、B【解析】

根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可【详解】把x=0代入方程得,解得a=±1.∵原方程是一元二次方程,所以

,所以,故故答案为B【点睛】本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.5、C【解析】

在正方形ABCD中,△ABE是等边三角形,可求出∠AEB、∠DAE的大小以及推断出AD=AE,从而可求出∠AED,再根据角的和差关系求出∠BED的度数.【详解】解:在正方形ABCD中,∠ABC=90°,AB=BC.∵△ABE是等边三角形,∴∠AEB=∠BAE=60°,AE=AB,∴∠DAE=90°−60°=30°,AD=AE,∴∠AED=∠ADE=(180°−30°)=75°,∴∠BED=∠AEB+∠AED=60°+75°=135°.故选:C.【点睛】本题考查了正方形的性质、等边三角形的性质.根据正方形和等边三角形的性质推知AD=AE是解题的关键.6、A【解析】

根据平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分;菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角进行解答即可.【详解】菱形具有但平行四边形不一定具有的是对角线互相垂直,故选A.【点睛】本题主要考查了菱形和平行四边形的性质,关键是熟练掌握二者的性质定理.7、D【解析】

先证明四边形ABEF是平行四边形,再证明邻边相等即可得出四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长.【详解】如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OA=OE,OB=OF=BF=6,∴OA==8,∴AE=2OA=16.故选D.【点睛】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.8、A【解析】

由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方,即可解答.【详解】解:A、42+52≠62,故不是直角三角形,符合题意;B、62+82=102,能构成直角三角形,不符合题意;C、72+242=252,能构成直角三角形,不符合题意;D、32+42=52,能构成直角三角形,不符合题意.故选:A.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9、C【解析】

根据等腰直角三角形的定义,由题意,应分两类情况讨论:当MN为直角边时和当MN为斜边时点P的位置的求法.【详解】当M运动到(-1,1)时,ON=1,MN=1,∵MN⊥x轴,所以由ON=MN可知,(0,0)和(0,1)就是符合条件的P点;又当M运动到第三象限时,要MN=MP,且PM⊥MN,设点M(x,2x+3),则有-x=-(2x+3),解得x=-3,所以点P坐标为(0,-3).如若MN为斜边时,则∠ONP=45°,所以ON=OP,设点M(x,2x+3),则有-x=-(2x+3),化简得-2x=-2x-3,这方程无解,所以这时不存在符合条件的P点;又当点M′在第二象限,M′N′为斜边时,这时N′P=M′P,∠M′N′P=45°,设点M′(x,2x+3),则OP=ON′,而OP=M′N′,∴有-x=(2x+3),解得x=-,这时点P的坐标为(0,-).因此,符合条件的点P坐标是(0,0),(0,-),(0,-3),(0,1).故答案选C,【点睛】本题主要采用分类讨论法,来求得符合条件的点P坐标.题中没有明确说明哪个边是直角边,哪条边是斜边,所以分情况说明,在证明时,注意点M的坐标表示方法以及坐标与线段长之间的转换.10、A【解析】分析:直接利用二次根式定义分析得出答案.详解:A、a2+1,∵a2B、333C、-1,无意义,不合题意;D、12a故选A.点睛:此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.二、填空题(每小题3分,共24分)11、4【解析】

根据等边三角形的性质和含30°的直角三角形的性质解答即可.【详解】∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC−AE=6−2=4.故答案为4.【点睛】本题考查了等边三角形的性质,解题的关键是熟练的掌握等边三角形的性质.12、1【解析】

由平行四边形的性质可得,,,,由面积和差关系可求四边形面积.【详解】解:,,四边形是平行四边形,,同理可得:,,,四边形面积四边形面积(四边形面积四边形面积),故答案为:1.【点睛】本题考查了平行四边形的判定与性质,由平行四边形的性质得出是解题的关键.13、【解析】

根据三角形法则依次进行计算即可得解.【详解】如图,∵=,,∴.故答案为:.【点睛】本题考查了平面向量,主要利用了三角形法则求解,作出图形更形象直观并有助于对问题的理解.14、【解析】

根据平均数确定出a后,再根据方差的公式S2=[(x1-)2+(x2-)2+…+(xn-)2]计算方差.【详解】解:由平均数的公式得:(1+a+3+6+7)÷5=4,解得a=3;∴方差=[(1-4)2+(3-4)2+(3-4)2+(6-4)2+(7-4)2]÷5=.故答案为.【点睛】此题考查了平均数和方差的定义.平均数是所有数据的和除以所有数据的个数.方差的公式S2=[(x1-)2+(x2-)2+…+(xn-)2].15、-4<x<0或x>1.【解析】

先根据已知条件画出在同一平面直角坐标系中,函数y=kx+b(k≠0)与(m≠0)的图象,再利用图象求解即可.【详解】解:如图.∵函数y=kx+b(k≠0)与(m≠0)的图象相交于点M(1,4),N(-4,-1),∴不等式kx+b>的解集为:-4<x<0或x>1.故答案为-4<x<0或x>1.【点睛】本题考查了反比例函数与一次函数的交点问题,画出图象利用数形结合是解题的关键.16、AC=BD或∠ABC=90°.【解析】

矩形是特殊的平行四边形,矩形有而平行四边形不具有的性质是:矩形的对角线相等,矩形的四个内角是直角;可针对这些特点来添加条件.【详解】:若使ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形)∠ABC=90°等.(有一个角是直角的平行四边形是矩形)故答案为AC=BD或∠ABC=90°.【点睛】此题主要考查的是平行四边形的性质及矩形的判定方法,熟练掌握矩形和平行四边形的联系和区别是解答此题的关键.17、①②③④【解析】

首先证明证明Rt△ADF≌Rt△BAC,结合已知得到AE=DF,然后根据内错角相等两直线平行得到DF∥AE,由一组对边平行且相等可得四边形ADFE是平行四边形,故②正确;由∠DAC=∠DAB+∠BAC=90°,可得∠AHE=90°,故①正确;由2AG=AF可知③正确;在Rt△DBF和Rt△EFA中,BD=FE,DF=EA,可证Rt△DBF≌Rt△EFA,故④正确.【详解】∵△ABD和△ACE都是等边三角形,

∴AD=BD=AB,AE=CE=AC,∠ADB=∠BAD=∠DBA=∠CAE=∠AEC=∠ACE=60°.

∵F是AB的中点,∴∠BDF=∠ADF=30°,∠DFA=∠DFB=90°,BF=AF=AB.

∵∠BAC=30°,∠ACB=90°,AD=2AF.

∴BC=AB,∠ADF=∠BAC,

∴AF=BF=BC.

在Rt△ADF和Rt△BAC中

AD=BA,AF=BC,

∴Rt△ADF≌Rt△BAC(HL),

∴DF=AC,

∴AE=DF.

∵∠BAC=30°,

∴∠BAC+∠CAE=∠BAE=90°,

∴∠DFA=∠EAB,

∴DF∥AE,

∴四边形ADFE是平行四边形,故②正确;∴AD=EF,AD∥EF,设AC交EF于点H,

∴∠DAC=∠AHE.

∵∠DAC=∠DAB+∠BAC=90°,

∴∠AHE=90°,

∴EF⊥AC.①正确;

∵四边形ADFE是平行四边形,

∴2GF=2GA=AF.

∴AD=4AG.故③正确.

在Rt△DBF和Rt△EFA中

BD=FE,DF=EA,

∴Rt△DBF≌Rt△EFA(HL).故④正确,

故答案为:①②③④.【点睛】本题解题的关键:运用到的性质定理有,直角全等三角形的判定定理HL,平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,全等三角形对应边与对应角相等的性质,平行四边形对角线互相平分与两组对边平行且相等的性质.18、2【解析】

先利用算术平方根和立方根进行化简,然后合并即可.【详解】解:原式=4-2=2故答案为:2【点睛】本题考查了算术平方根和立方根的运算,掌握算术平方根和立方根是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.【解析】

(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.【详解】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)四边形AEMF是菱形,理由为:证明:∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC(正方形四条边相等),∵BE=DF(已证),∴BC-BE=DC-DF(等式的性质),即CE=CF,在△COE和△COF中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF,∴平行四边形AEMF是菱形.20、(1)见解析,5.0;4.1;(2)见解析;(3)2.5或9.1【解析】

(1)根据点P在第5秒与第9秒的位置,分别求出BP的长,即可得到答案;(2)根据表格中的x,y的对应值,描点、连线,画出函数图象,即可;(3)令CP=y′,确定P在BC和AC上时,得y′=-x+5或y′=x-5,画出图象,得到图象的交点的横坐标,即可求解.【详解】(1)当x=5时,点P与点C重合,y=5,当x=9时,点P在AC边上,且CP=9×1-5=4cm,过点B作BD⊥AC于点D,则CD=AC=3cm,BD=cm,∴DP=CP-CD=4-3=1cm,BP=cm,即:y=4.1.如下表:x01234567891011y0.01.02.03.04.05.04.54.14.04.14.55.0故答案为:5.0;4.1;(2)描点、连线,画出函数图象如下:(3)令CP=y′,当0≤x≤5时,y′=-x+5;当5<x≤11时,y′=x-5,画出图象可得:当x=2.5或9.1时,BP=PC.故答案为:2.5或9.1.【点睛】本题主要考查动点问题的函数图象,理解图表的信息,掌握描点、连线,画出函数图象,理解当BP=CP时,x的值是函数图象的交点的横坐标,是解题的关键.21、(1)篮球和排球的单价分别是96元、64元.(2)共有三种购买方案:①购买篮球26个,排球10个;②购买篮球27个,排球11个;③购买篮球28个,排球8个【解析】

(1)设篮球的单价为x元,则排球的单价为x元.根据等量关系“单价和为80元”,列方程求解;(2)设购买的篮球数量为n个,则购买的排球数量为(36-n)个.根据不等关系:①购买的排球数少于11个;②不超过3200元的资金购买一批篮球和排球.列不等式组,进行求解.【详解】解:(1)设篮球的单价为x元,则排球的单价为x元据题意得x+x=160解得x=96∴x=64即篮球和排球的单价分别是96元、64元.(2)设购买的篮球数量为n,则购买的排球数量为(36-n)个由题意得解得2528而n是整数,所以其取值为26,27,28,对应36-n的值为10,9,8,所以共有三种购买方案:①购买篮球26个,排球10个;②购买篮球27个,排球11个;③购买篮球28个,排球8个22、(1)(2)(3)【解析】

(1)先通分,然后利用同分母分式加减法的法则进行计算即可;(2)括号内先通分进行分式加减法运算,然后再进行分式乘除法运算,最后把数值代入化简后的结果进行计算即可;(3)方程两边同时乘以(x+2)(x-2),化为整式方程后解整式方程,然后进行检验即可.【详解】(1)原式=;(2)原式==,当,时,原式;(3)两边同时乘以(x+2)(x-2),得:,解得:,检验:当时,(x+2)(x-2)≠0,所以x=10是原分式方程的解.【点睛】本题考查了分式的化简求值,解分式方程,熟练掌握分式混合运算的法则是解(1)(2)的关键,掌握解分式方程的一般步骤以及注意事项是解(3)的关键.23、(1)40%,144;(2)详见解析;(3)250人【解析】

(1)根据扇形统计图中的数据可以求得最喜欢A项目的人数所占的百分比,并求出其所在扇形统计图中对应的圆心角度数;(2)根据统计图中的数据可以求得选择A的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得全校最喜欢跑步的学生人数约是多少.【详解】解:(1)样本中最喜欢A项目的人数所占的百分比为:1﹣30%﹣10%﹣20%=40%,其所在扇形统计图中对应的圆心角度数是:360°×40%=144°,故答案为40%,144;(2)选择A的人有:45÷30%×40%=60(人),补全的条形统计图如右图所示;(3)2500×10%=250(人),答:全校最喜欢跑步的学生人数约是250人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24、(1)①②④(2)在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形【解析】

(1)根据平行线的判定定理写出真命题;(2)乙②为例,写出已知、求证.利用四边形的内角和和已知条件中的对角相等得到邻角互补,从而判定两组对边平行,进而证得结论.【详解】(1)①一组对边平行,一组对角相等的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论