下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
八年级正方形教学课件教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来讨论正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[同学活动:各自测量。]
鼓舞同学将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个同学表述其结论,表述是要留意订正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[同学活动:查找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里查找属于菱形的性质。
[同学活动;查找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
准时提出问题,引导同学进行思索。
师:依据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个精确 的定义?
[同学活动:乐观思索,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以依据矩形与菱形的定义类似的给出正方形的定义。
同学应能够向出十种左右的定义方式,其余作相应鼓舞,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[同学活动:争论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采纳的是第三种定义方式。]
师:依据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
动画演示:
场景五:平行四边形、矩形、菱形、正方形之间的关系
场景六:平行四边形、矩形、菱形、正方形之间的性质关系
师:当然平行四边形、矩形、菱形和正方形它们之间的关系还可以用下图(图1)表示:
图1
师:请同学们把平行四边形、矩形、菱形和正方形它们之间的关系以及平行四边形、矩形、菱形和正方形它们之间的性质关系整理在笔记本上。
例题讲解
例1在已知锐角三角形ABC外边作正方形ABDE和正方形ACFG,求证:BG=CE
分析:据已知条件画出图形,如图2所示,要证明线段相等,与图形可以证明二个三角形全等,即只需证明△ABG≌△AEC.
证明:∵四边形ABDE和ACFG都是正方形
∴AB=AE,AG=AC
∠BAE=∠CAG=90°
∴∠BAE+∠BAC=∠CAG+∠BAC
即∠BAG=∠EAC
∴△ABG≌△AEC∴BG=CE
图2
说明:应用正方形的性质,可以为证明全等供应条件,要留意等式性质的应用,这与向锐角三角形ABC外作等边三角形的结论完全相同,证法是可以借鉴的。
巩固练习
巩固练习题目可有老师依据同学状况自主选择。
讲解新课
师:正方形是特别的平行四边形、矩形、菱形,那么依据平行四边形、矩形、菱形和正方形它们之间的关系,怎么判定一个矩形是正方形?
生:证一组邻边相等。
师:怎么判定一个菱形是正方形?
生:证有一个角是直角。
师:怎么判定一个平行四边形是正方形?
生:依据定义,证有一组邻边相等且有一个角是直角。
师:那么,刚才的结论假如用图来表示,是不是如图2所示?
师:图3表现出由平行四边形、矩形、菱形分别得到正方形的.三种方法。这是我们依据平行四边形、矩形、菱形和正方形它们之间的关系得到的,但好像有缺憾,能不能同样依据平行四边形、矩形、菱形和正方形它们之间的关系把图3补全?
[同学活动:乐观思索,部分同学怀疑不解。]
师点取上等同学回答问题,依据回答得图4。
生恍然大悟。
同学思路得到启发,中上等及上等同学意犹未尽,鼓舞他们依据矩形、菱形的判定方法直接得到正方形的判定思路,并要求其举出简洁示例。
就势跟进,要求同学思索,给定四边形,有什么样的边、角、对角线条件可判定四边形是正方形?要求给出简洁图例,并说出相应证明思路。
为进一步理解正方形的判定方法,可讨论以下几个问题:
(1)对角线相等的菱形是正方形吗?
(2)对角线相互垂直的矩形是正方形吗?
(3)对角线相互垂直且相等的四边形是正方形吗?若不是,还需增加什么条件?
(4)能说“四条便都相等的四边形是正方形吗?”
(5)四个角都相等的四边形是正方形吗?
小结:证明正方形的思路,总体讲三种思路,如图4所示;遇到详细条件要学会详细分析,规定条件和隐含条件不外乎边、角、对角线,或者把他们搅和在一起。这是肯定要都要冷静,学会去分析。
动画演示:
场景七:正方形的判定
例题讲解
例2如图所示,在正方形ABCD中,E、F分别是BC、AB的中点,DE、CF相交于M,
求证:AD=AM。
分析:欲证AD=AM,只需证明∠1=∠2,但要依据题目条件直接证明∠1=∠2比较困难,考虑到E、F是正方形的两边中点,容
易证明得:△BCF≌△CDF,得∠3=∠4,而∠4+∠BCF=90°.由此DE⊥CF,这是要证AD=AM,是否想到与直角有关的等腰三角形?只需延长CF、DA交于N,即可消失直角三角形MND,只要证明A是ND中点即可。这是是否发觉△BCF≌△ANF?由AN=BC=AD,从而A是ND中点,MA是直角三角形MND的斜边ND上的中线。问题得证。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国成型炉行业投资前景及策略咨询研究报告
- 2024至2030年变速操纵杆总成项目投资价值分析报告
- 2024至2030年混凝土养护保湿布项目投资价值分析报告
- 2024至2030年小包装茶项目投资价值分析报告
- 2024年大功率激光传输石英光纤项目规划申请报告
- 2024年密封用填料及类似品项目立项申请报告范文
- 防汛抗旱宣传横幅标语(60句)
- 颐和园导游词100字(34篇)
- 建筑冬季施工方案(30篇)
- 建筑工地工程合同
- 旅游景区消防安全培训
- 电商行业直播带货营销策略方案
- 小学四年级数学三位数除以两位数过关考核口算题带答案
- 糖尿病健康知识宣教
- 八上历史全册知识梳理
- 2024年湖南湘潭市公安局招聘留置看护巡逻警务辅助人员28人历年高频难、易错点500题模拟试题附带答案详解
- 2024年银行考试-招商银行考试近5年真题集锦(频考类试题)带答案
- 2024-2025学年 浙教版七年级数学上册期中(第1-4章)培优试卷
- CHT 1027-2012 数字正射影像图质量检验技术规程(正式版)
- 国际经济与贸易专业生涯人物访谈报告
- 《扣件式钢管脚手架安全技术规范》JGJ130-2023
评论
0/150
提交评论