2023届湖北省武汉市武汉外学校数学八下期末经典试题含解析_第1页
2023届湖北省武汉市武汉外学校数学八下期末经典试题含解析_第2页
2023届湖北省武汉市武汉外学校数学八下期末经典试题含解析_第3页
2023届湖北省武汉市武汉外学校数学八下期末经典试题含解析_第4页
2023届湖北省武汉市武汉外学校数学八下期末经典试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(()A. B. C. D.2.在四边形ABCD中,两对角线交于点O,若OA=OB=OC=OD,则这个四边形()A.可能不是平行四边形 B.一定是菱形C.一定是正方形 D.一定是矩形3.如图,在△ABC中,AB、AC的垂直平分线l1、l2相交于点O,若∠BAC等于82°,则∠OBC等于()A.8° B.9° C.10° D.11°4.下面四个应用图标中,属于中心对称图形的是()A. B. C. D.5.下列命题中,不正确的是()A.对角线互相垂直的四边形是菱形 B.正多边形每个内角都相等C.对顶角相等 D.矩形的两条对角线相等6.在中,,是对角线上不同的两点,下列条件中,不能得出四边形一定为平行四边形的是()A. B. C. D.7.某小组5名同学在一周内参加家务劳动的时间如下表,关于“劳动时间”的这组数据,以下说法正确的是().劳动时间(小时)33.244.5人数1121A.中位数是4,平均数是3.74;B.中位数是4,平均数是3.75;C.众数是4,平均数是3.75;D.众数是2,平均数是3.8.8.菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等 B.两条对角线相等C.四个内角都是直角 D.每一条对角线平分一组对角9.下列说法中:①样本中的方差越小,波动越小,说明样本稳定性越好;②一组数据的众数只有一个;③一组数据的中位数一定是这组数据中的某一个数据;④数据3,3,3,3,2,5中的众数为4;⑤一组数据的方差一定是正数.其中正确的个数为()A.0 B.1 C.2 D.410.如图,在中,于点,,则的度数是()A. B. C. D.11.化简8aA.4aa B.-4aa C.2a12.设的整数部分是,小数部分是,则的值为().A. B. C. D.二、填空题(每题4分,共24分)13.已知一个多边形的内角和为540°,则这个多边形是______边形.14.一个弹簧不挂重物时长,挂上重物后伸长的长度与所挂重的质量成正比。如果挂上的质量后弹簧伸长,则弹簧的总长(单位:)关于所挂重物(单位:)的函数解析式是_________.15.一个多边形的各内角都相等,且内外角之差的绝对值为60°,则边数为__________.16.在平面直角坐标系xOy中,已知抛物线的顶点在轴上,P,Q()是此抛物线上的两点.若存在实数,使得,且成立,则的取值范围是__________.17.如图,在中,,,,为边上一动点,于,于,为的中点,则的最小值为________.18.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_________.三、解答题(共78分)19.(8分)自中央出台“厉行节约、反对浪费”八项规定后,某品牌高档酒销量锐减,进入四月份后,经销商为扩大销量,每瓶酒比三月份降价500元,如果卖出相同数量的高档酒,三月份销售额为4.5万元,四月份销售额只有3万元.(1)求三月份每瓶高档酒售价为多少元?(2)为了提高利润,该经销商计划五月份购进部分大众化的中低档酒销售.已知高档酒每瓶进价为800元,中低档酒每瓶进价为400元.现用不超过5.5万元的预算资金购进,两种酒共100瓶,且高档酒至少购进35瓶,请计算说明有几种进货方案?(3)该商场计划五月对高档酒进行促销活动,决定在四月售价基础上每售出一瓶高档酒再送顾客价值元的代金券,而中低档酒销售价为550元/瓶.要使(2)中所有方案获利恰好相同,请确定的值,并说明此时哪种方案对经销商更有利?20.(8分)解不等式组,并在数轴上把解集表示出来.21.(8分)如图,把两个大小相同的含有45º角的直角三角板按图中方式放置,其中一个三角板的锐角顶点与另一个三角板的直角顶点重合于点A,且B,C,D在同一条直线上,若AB=2,求CD的长.22.(10分)已知:菱形ABCD中,对角线于点E,求菱形ABCD的面积和BE的长.23.(10分)如图,在平行四边形ABCD中,点E,F分别是AB,CD的中点.(1)求证:四边形AEFD是平行四边形;(2)若∠DAB=120°,AB=12,AD=6,求△ABC的面积.24.(10分)俄罗斯足球世界杯点燃了同学们对足球运动的热情,某学校划购买甲、乙两种品牌的足球供学生使用.已知用1000元购买甲种足球的数量和用1600元购买乙种足球的数量相同,甲种足球的单价比乙种足球的单价少30元.(1)求甲、乙两种品牌的足球的单价各是多少元?(2)学枝准备一次性购买甲、乙两种品牌的足球共25个,但总费用不超过1610元,那么这所学校最多购买多少个乙种品牌的足球?25.(12分)如图:在正方形ABCD中,点P、Q是CD边上的两点,且DP=CQ,过D作DG⊥AP于H,交AC、BC分别于E,G,AP、EQ的延长线相交于R.(1)求证:DP=CG;(2)判断△PQR的形状,请说明理由.26.如图,在平面直角坐标系中,正方形两顶点为,,点D的坐标为,在上取点E,使得,连接,分别交,于M,N两点.(1)求证:;(2)求点E的坐标和线段所在直线的解析式;(3)在M,N两点中任选一点求出它的坐标.

参考答案一、选择题(每题4分,共48分)1、B【解析】

解:根据题意可得:∴反比例函数处于二、四象限,则在每个象限内为增函数,且当x<0时y>0,当x>0时,y<0,∴<<.2、D【解析】

根据OA=OC,OB=OD,判断四边形ABCD是平行四边形.然后根据AC=BD,判定四边形ABCD是矩形.【详解】解:这个四边形是矩形,理由如下:

∵对角线AC、BD交于点O,OA=OC,OB=OD,

∴四边形ABCD是平行四边形,

又∵OA=OC=OD=OB,

∴AC=BD,

∴四边形ABCD是矩形.

故选D.【点睛】本题考查了矩形的判断,熟记矩形的各种判定方法是解题的关键.3、A【解析】

连接OA,根据三角形内角和定理求出∠ABC+∠ACB,根据线段垂直平分线的性质、等腰三角形的性质得到∠OAB=∠OBA,∠OAC=∠OCA,根据三角形内角和定理计算即可.【详解】解:连接OA,∵∠BAC=82°,∴∠ABC+∠ACB=180°﹣82°=98°,∵AB、AC的垂直平分线交于点O,∴OB=OA,OC=OA,∴∠OAB=∠OBA,∠OAC=∠OCA,∴∠OBC+∠OCB=98°﹣(∠OBA+∠OCA)=16°,∴∠OBC=8°,故选:A.【点睛】本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.4、A【解析】

根据中心对称图形的概念进行判断即可.【详解】解:A、图形是中心对称图形;B、图形不是中心对称图形;C、图形不是中心对称图形;D、图形不是中心对称图形,故选:A.【点睛】本题考查的是中心对称图形的概念.掌握定义是解题的关键,中心对称图形是要寻找对称中心,旋转180度后能与自身重合.5、A【解析】

根据菱形的判定,正多边形的性质,对顶角的性质,矩形的性质依次分析即可.【详解】对角线互相垂直的平行四边形是菱形,故A错误,符合题意;正多边形每个内角都相等,故B正确,不符合题意;对顶角相等,故C正确,不符合题意;矩形的两条对角线相等,故D正确,不符合题意,故选:A.【点睛】此题考查判断命题正确与否,正确掌握菱形的判定,正多边形的性质,对顶角的性质,矩形的性质是解题的关键.6、D【解析】

数形结合,依题意画出图形,可通过选项所给条件证三角形全等,再根据平行四边形的判定定理判断即可.【详解】解:如图所示,A.四边形ABCD是平行四边形又(SAS)四边形BEDF是平行四边形,故A选项正确.B.四边形ABCD是平行四边形又(ASA)四边形BEDF是平行四边形,故B选项正确.C.四边形ABCD是平行四边形(AAS),四边形BEDF是平行四边形,故C选项正确.D.四边形ABCD是平行四边形,,再加上并不能证明三角形全等,也不能通过平行四边形的判定定理直接证明,故D选项错误.故答案为:D【点睛】本题考查了平行四边形的性质与判定,灵活运用选项所给条件,结合平行四边形的性质证三角形全等是解题的关键.7、A【解析】

平均数是指在一组数据中所有数据之和再除以数据的个数,结合图表中的数据即可求出这组数据的平均数了;观察图表可知,只有劳动时间是4小时的人数是2,其他都是1人,据此即可得到众数,总共有5名同学,则排序后,第3名同学所对应的劳动时间即为中位数,【详解】观察表格可得,这组数据的中位数和众数都是4,平均数=(3+3.2+4×2+4.5)÷5=3.74.故选A.【点睛】此题考查加权平均数,中位数,解题关键在于看懂图中数据8、D【解析】

菱形具有平行四边形的全部性质,故分析ABCD选项,添加一个条件证明平行四边形为菱形即为菱形具有而平行四边形不具有的性质,即可解题.【详解】解:平行四边形的对角线互相平分,对边相等,

且菱形具有平行四边形的全部性质,

故A、B、C选项错误;

对角线平分一组对角的平行四边形是菱形,故D选项正确.

故选D.【点睛】本题考查了平行四边形的邻角互补、对角线互相平分,对角相等的性质,菱形每条对角线平分一组对边的性质,本题中熟练掌握菱形、平行四边形的性质是解题的关键.9、B【解析】①样本的方差越小,波动性越小,说明样本稳定性越好,故①正确;②一组数据的众数不只有一个,有时有好几个,故②错误;③一组数据的中位数不一定是这组数据中的某一数,若这组数据有偶数个即是将一组数据从小到大重新排列后最中间两个数的平均数,故③错误;④数据:2,2,3,2,2,5的众数为2,故④错误;⑤一组数据的方差不一定是正数,也可能为零,故⑤错误.所以说法正确的个数是1个.故选B.10、B【解析】

由四边形ABCD是平行四边形,根据平行四边形的对角相等,可得∠D=∠B=55°,又因为AE⊥CD,可得∠DAE=180°-∠D-∠AED=35°.【详解】解:∵四边形ABCD是平行四边形,

∴∠D=∠B=55°,

∵AE⊥CD,

∴∠AED=90°,

∴∠DAE=180°-∠D-∠AED=35°.

故选:B.【点睛】本题考查了平行四边形的性质:平行四边形的对角相等,还考查了垂直的定义与三角形内角和定理.题目比较简单,解题时要细心.11、C【解析】

根据二次根式的性质进行化简即可.【详解】8∵a≥1,∴原式=2a2a故选C.【点睛】本题主要考查二次根式的性质、化简,关键在于根据已知推出a≥1.12、B【解析】

只需首先对

估算出大小,从而求出其整数部分a,再进一步表示出其小数部分b,然后将其代入所求的代数式求值.【详解】解:∵4<5<9,∴1<<2,∴-2<<-1.∴1<<2.∴a=1,∴b=5--1=,∴a-b=1-2+=故选:B.【点睛】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.“夹逼法”是估算的一般方法,也是常用方法.二、填空题(每题4分,共24分)13、5.【解析】设这个多边形是n边形,由题意得,(n-2)×180°=540°,解之得,n=5.14、【解析】

弹簧总长弹簧原来的长度挂上重物质量时弹簧伸长的长度,把相关数值代入即可.【详解】解:挂上的物体后,弹簧伸长,挂上的物体后,弹簧伸长,弹簧总长.故答案为:.【点睛】本题考查了由实际问题抽象一次函数关系式的知识,得到弹簧总长的等量关系是解决本题的关键.15、3或1【解析】

分别表示多边形的每一个内角及与内角相邻的外角,根据题意列方程求解即可.【详解】解:因为:多边形的内角和为,又每个内角都相等,所以:多边形的每个内角为,而多边形的外角和为,由多边形的每个内角都相等,则每个外角也都相等,所以多边形的每个外角为,所以,所以,所以或解得:,经检验符合题意.故答案为:3或1.【点睛】本题考查的是多边形的内角和与外角和,多边形的一个内角与相邻的外角互补,掌握相关的性质是解题的关键.16、【解析】

由抛物线顶点在x轴上,可得函数可以化成,即可化成完全平方公式,可得出,原函数可化为,将带入可解得的值用m表示,再将,且转化成PQ的长度比与之间的距离大可得出只含有m的不等式即可求解.【详解】解:∵抛物线顶点在x轴上,∴函数可化为的形式,即可化成完全平方公式∴可得:,∴;令,可得,由题可知,解得:;∴线段PQ的长度为,∵,且,∴,∴,解得:;故答案为【点睛】本题考查特殊二次函数解析式的特点,可以利用公式法求得a、b之间的关系,也可以利用顶点在x轴上的函数解析式的特点来得出a、b之间的关系;最后利用PQ的长度大于与之间的距离求解不等式,而不是简单的解不等式,这个是解题关键.17、1.2【解析】

∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴AM的最小值是1.2.18、【解析】

解:如图,延长CF交AB于点G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵点D是BC中点,∴DF是△CBG的中位线.∴DF=BG=(AB﹣AG)=(AB﹣AC)=.故答案为:.三、解答题(共78分)19、(1)三月份每瓶高档酒售价为1500元;(2)有三种进货方案,分别为:①购进种酒35瓶,种酒65瓶,②购进种酒36瓶,种酒64瓶,③购进种酒37瓶,种酒63瓶;(3),种酒越少,所用进货款就越少,在利润相同的情况下,选择方案①对经销商更有利.【解析】

(1)设三月份每瓶高档酒A售价为x元,然后根据三、四月卖出相同数量列出方程,求解即可;(2)设购进A种酒y瓶,表示出B种酒为(100-y)瓶,再根据预算资金列出不等式组,然后求出y的取值范围,再根据y是正整数设计方案;(3)设购进A种酒y瓶时利润为w元,然后列式整理得到获利表达式,再根据所有方案获利相等列式计算即可得解.【详解】解:(1)设三月份每瓶高档酒售价为元,由题意得,解得,经检验,是原方程的解,且符合题意,答:三月份每瓶高档酒售价为1500元;(2)设购进种酒瓶,则购进种酒为(100-y)瓶,由题意得,解得,∵为正整数,∴、、,∴有三种进货方案,分别为:①购进种酒35瓶,种酒65瓶,②购进种酒36瓶,种酒64瓶,③购进种酒37瓶,种酒63瓶;(3)设购进种酒瓶时利润为元,则四月份每瓶高档酒售价为元,,,∵(2)中所有方案获利恰好相同∴,解得.∵∴种酒越少,所用进货款就越少,在利润相同的情况下,选择方案①对经销商更有利.【点睛】此题考查二元一次方程组的应用,一元一次不等式组的应用,解题关键在于列出方程20、x>1【解析】

分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【详解】解:解不等式①,得x>1,解不等式②,得x≥-4,把不等式①和②的解集在数轴上表示出来为:∴原不等式组的解集为x>1,【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.21、.【解析】

过点A作AF⊥BC于F,先利用等腰直角三角形的性质求出BC=4,BF=AF=CF=2,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴△ABC是等腰直角三角形,∴BC=AB=4,BF=AF=CF=BC=2,∵两个同样大小的含45°角的三角尺,∴AD=BC=4,在Rt△ADF中,根据勾股定理得,DF=,∴CD=DF-CF=,故答案为:.【点睛】此题主要考查了勾股定理,等腰直角三角形的判定与性质,全等三角形的性质,正确作出辅助线是解本题的关键.22、菱形ABCD的面积为的长为.【解析】试题分析:根据菱形的性质可由AC=16、BD=12求得菱形的面积和菱形的边长,而由求出的面积和边长即可求得BE的长.试题解析:如图,∵菱形ABCD的对角线相交于点O,AC=16cm,BD=12cm,∴AC⊥BD于点O,CO=8cm,DO=6cm,S菱形=(cm2),∴CD=(cm),∵BE⊥CD于点E,∴BE·CD=72,即10BE=96,∴BE=(cm).23、(1)见解析;(2)S△ABC=18.【解析】

(1)易知AE=AB,DF=CD,即可得到AE=DF,又有AB∥CD,所以四边形AEFD是平行四边形;(2)作CH⊥AB于H.利用平行四边形性质求出∠B,再利用三角函数求出CH,接着利用三角形面积公式求解即可【详解】(1)证明:如图.∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD,∵点E,F分别是AB,CD的中点,∴AE=AB,DF=CD.∴AE=DF,∴四边形AEFD是平行四边形;(2)如图,作CH⊥AB于H.∵四边形ABCD是平行四边形,∴AD=BC=6,AD∥BC,∴∠B=180°﹣∠DAB=60°,∴CH=BC•sin60°=3,∴S△ABC=•AB•CH=×12×3=18【点睛】本题主要考查平行四边形的证明与性质,三角函数的简单应用,三角形面积计算等知识点,本题第二问关键在于能够做出辅助线同时利用三角函数求出高24、(1)甲种品牌的足球的单价为50元/个,乙种品牌的足球的单价为1元/个;(2)这所学校最多购买2个乙种品牌的足球.【解析】

​(1)设甲种品牌的足球的单价为x元/个,则乙种品牌的足球的单价为(x+30)元/个,根据数量=总价÷单价结合用1000元购买甲种足球的数量和用1600元购买乙种足球的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;

(2)设这所学校购买m个乙种品牌的足球,则购买(25-m)个甲种品牌的足球,根据总价=单价×数量结合总费用不超过1610元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设甲种品牌的足球的单价为x元/个,则乙种品牌的足球的单价为(x+30)元/个,根据题意得:,解得:x=50,经检验,x=50是所列分式方程的解,且符合题意,∴x+30=1.答:甲种品牌的足球的单价为50元/个,乙种品牌的足球的单价为1元/个.(2)设这所学校购买m个乙种品牌的足球,则购买(25–m)个甲种品牌的足球,根据题意得:1m+50(25–m)≤1610,解得:m≤2.答:这所学校最多购买2个乙种品牌的足球.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论