![2022届山东省冠县联考中考数学五模试卷含解析_第1页](http://file4.renrendoc.com/view/3b8d8409bb18c46a61e78290ba548b87/3b8d8409bb18c46a61e78290ba548b871.gif)
![2022届山东省冠县联考中考数学五模试卷含解析_第2页](http://file4.renrendoc.com/view/3b8d8409bb18c46a61e78290ba548b87/3b8d8409bb18c46a61e78290ba548b872.gif)
![2022届山东省冠县联考中考数学五模试卷含解析_第3页](http://file4.renrendoc.com/view/3b8d8409bb18c46a61e78290ba548b87/3b8d8409bb18c46a61e78290ba548b873.gif)
![2022届山东省冠县联考中考数学五模试卷含解析_第4页](http://file4.renrendoc.com/view/3b8d8409bb18c46a61e78290ba548b87/3b8d8409bb18c46a61e78290ba548b874.gif)
![2022届山东省冠县联考中考数学五模试卷含解析_第5页](http://file4.renrendoc.com/view/3b8d8409bb18c46a61e78290ba548b87/3b8d8409bb18c46a61e78290ba548b875.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC的()A.三条高的交点 B.重心 C.内心 D.外心2.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是A.B.C.D.3.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1 C.x>3 D.x≥34.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.5.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB6.据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人数据“5657万”用科学记数法表示为A. B. C. D.7.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6
B.7C.11D.128.如图,正方形ABCD中,对角线AC、BD交于点O,∠BAC的平分线交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,连接GE、GF,以下结论:①△OAE≌△OBG;②四边形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正确的有()个.A.2 B.3 C.4 D.59.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()A.120元 B.125元 C.135元 D.140元10.下列图形中,既是中心对称,又是轴对称的是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.化简二次根式的正确结果是_____.12.已知是一元二次方程的一个根,则方程的另一个根是________.13.抛物线y=(x+1)2-2的顶点坐标是______.14.如图,在四边形ABCD中,,AC、BD相交于点E,若,则______.15.一次函数y=kx+b(k≠0)的图象如图所示,那么不等式kx+b<0的解集是_____.16.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,…,它们的横坐标依次为2,4,6,8,…分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S1,S2,S3,…,Sn,则S1+S2+S3+…+Sn=_____(用含n的代数式表示)17.观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45m,根据以上观测数据可求观光塔的高CD是______m.三、解答题(共7小题,满分69分)18.(10分)第二十四届冬季奧林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.[收集数据]从甲、乙两校各随机抽取名学生,在这次竞赛中他们的成绩如下:甲:乙:[整理、描述数据]按如下分数段整理、描述这两组样本数据:学校人数成绩甲乙(说明:优秀成绩为,良好成绩为合格成绩为.)[分析数据]两组样本数据的平均分、中位数、众数如下表所示:学校平均分中位数众数甲乙其中.[得出结论](1)小明同学说:“这次竞赛我得了分,在我们学校排名属中游略偏上!”由表中数据可知小明是_校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取--名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为_;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由:;(至少从两个不同的角度说明推断的合理性)19.(5分)如图,在平面直角坐标系xOy中,直线与x轴交于点A,与双曲线的一个交点为B(-1,4).求直线与双曲线的表达式;过点B作BC⊥x轴于点C,若点P在双曲线上,且△PAC的面积为4,求点P的坐标.20.(8分)已知,求代数式的值.21.(10分)已知点E是矩形ABCD的边CD上一点,BF⊥AE于点F,求证△ABF∽△EAD.22.(10分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.(1)直接写出点E的坐标(用含t的代数式表示):;(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.23.(12分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.求AB的长(结果保留根号);已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由.(参考数据:≈1.7,≈1.4)24.(14分)如图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选D.【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.2、A。【解析】如图,∵根据三角形面积公式,当一边OA固定时,它边上的高最大时,三角形面积最大,∴当PO⊥AO,即PO为三角形OA边上的高时,△APO的面积y最大。此时,由AB=2,根据勾股定理,得弦AP=x=。∴当x=时,△APO的面积y最大,最大面积为y=。从而可排除B,D选项。又∵当AP=x=1时,△APO为等边三角形,它的面积y=,∴此时,点(1,)应在y=的一半上方,从而可排除C选项。故选A。3、C【解析】试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>1.故选C.考点:在数轴上表示不等式的解集.4、C【解析】
根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、D【解析】
解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.6、C【解析】
科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【详解】解:5657万用科学记数法表示为,
故选:C.【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.7、C【解析】
根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【详解】∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=1.故选C.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.8、C【解析】
根据AF是∠BAC的平分线,BH⊥AF,可证AF为BG的垂直平分线,然后再根据正方形内角及角平分线进行角度转换证明EG=EB,FG=FB,即可判定②选项;设OA=OB=OC=a,菱形BEGF的边长为b,由四边形BEGF是菱形转换得到CF=GF=BF,由四边形ABCD是正方形和角度转换证明△OAE≌△OBG,即可判定①;则△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的关系式,再由△PGC∽△BGA,得到=1+,从而判断得出④;得出∠EAB=∠GBC从而证明△EAB≌△GBC,即可判定③;证明△FAB≌△PBC得到BF=CP,即可求出,从而判断⑤.【详解】解:∵AF是∠BAC的平分线,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是线段BG的垂直平分线,∴EG=EB,FG=FB,∵四边形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四边形BEGF是菱形;②正确;设OA=OB=OC=a,菱形BEGF的边长为b,∵四边形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四边形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正确;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四边形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正确;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正确;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤错误;综上所述,正确的有4个,故选:C.【点睛】本题综合考查了全等三角形的判定与性质,相似三角形,菱形的判定与性质等四边形的综合题.该题难度较大,需要学生对有关于四边形的性质的知识有一系统的掌握.9、B【解析】试题分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解.解:设这种服装每件的成本是x元,根据题意列方程得:x+15=(x+40%x)×80%解这个方程得:x=125则这种服装每件的成本是125元.故选B.考点:一元一次方程的应用.10、C【解析】
根据中心对称图形,轴对称图形的定义进行判断.【详解】A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.二、填空题(共7小题,每小题3分,满分21分)11、﹣a【解析】,..12、【解析】
通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将2-代入计算即可.【详解】设方程的另一根为x1,又∵x=2-,由根与系数关系,得x1+2-=4,解得x1=2+.故答案为:【点睛】解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解.13、(-1,-2)【解析】试题分析:因为y=(x+1)2﹣2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2),故答案为(﹣1,﹣2).考点:二次函数的性质.14、【解析】
利用相似三角形的性质即可求解;【详解】解:∵AB∥CD,∴△AEB∽△CED,∴,∴,故答案为.【点睛】本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质.15、x>﹣1.【解析】
一次函数y=kx+b的图象在x轴下方时,y<0,再根据图象写出解集即可.【详解】当不等式kx+b<0时,一次函数y=kx+b的图象在x轴下方,因此x>﹣1.故答案为:x>﹣1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.16、10﹣【解析】
过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn+1于点D,所有的阴影部分平移到左边,阴影部分的面积之和就等于矩形P1ABD的面积,即可得到答案.【详解】如图,过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn于点D,则点Pn+1的坐标为(2n+2,),则OB=,∵点P1的横坐标为2,∴点P1的纵坐标为5,∴AB=5﹣,∴S1+S2+S3+…+Sn=S矩形AP1DB=2(5﹣)=10﹣,故答案为10﹣.【点睛】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,解题的关键是掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|.17、135【解析】试题分析:根据题意可得:∠BDA=30°,∠DAC=60°,在Rt△ABD中,因为AB=45m,所以AD=m,所以在Rt△ACD中,CD=AD=×=135m.考点:解直角三角形的应用.三、解答题(共7小题,满分69分)18、80;(1)甲;(2);(3)乙学校竞赛成绩较好,理由见解析【解析】
首先根据乙校的成绩结合众数的定义即可得出a的值;(1)根据两个学校成绩的中位数进一步判断即可;(2)根据概率的定义,结合乙校优秀成绩的概率进一步求解即可;(3)根据题意,从平均数以及中位数两方面加以比较分析即可.【详解】由乙校成绩可知,其中80出现的次数最多,故80为该组数据的众数,∴a=80,故答案为:80;(1)由表格可知,甲校成绩的中位数为60,乙校成绩的中位数为75,∵小明这次竞赛得了分,在他们学校排名属中游略偏上,∴小明为甲校学生,故答案为:甲;(2)乙校随便抽取一名学生的成绩,该学生成绩为优秀的概率为:,故答案为:;(3)乙校竞赛成绩较好,理由如下:因为乙校的平均分高于甲校的平均分说明平均水平高,乙校的中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多,综上所述,乙校竞赛成绩较好.【点睛】本题主要考查了众数、中位数、平均数的定义与简单概率的计算的综合运用,熟练掌握相关概念是解题关键.19、(1)直线的表达式为,双曲线的表达方式为;(2)点P的坐标为或【解析】分析:(1)将点B(-1,4)代入直线和双曲线解析式求出k和m的值即可;(2)根据直线解析式求得点A坐标,由S△ACP=AC•|yP|=4求得点P的纵坐标,继而可得答案.详解:(1)∵直线与双曲线()都经过点B(-1,4),,,∴直线的表达式为,双曲线的表达方式为.(2)由题意,得点C的坐标为C(-1,0),直线与x轴交于点A(3,0),,∵,,点P在双曲线上,∴点P的坐标为或.点睛:本题主要考查反比例函数和一次函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积是解题的关键.20、12【解析】解:∵,∴.∴.将代数式应用完全平方公式和平方差公式展开后合并同类项,将整体代入求值.21、证明见解析【解析】试题分析:先利用等角的余角相等得到根据有两组角对应相等,即可证明两三角形相似.试题解析:∵四边形为矩形,于点F,点睛:两组角对应相等,两三角形相似.22、(1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.【解析】
(1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,∴AD=t(4﹣t),∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,∵EG⊥x轴、FP⊥x轴,且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生态友好的教育环境创建计划
- 悬挂起重机安装施工方案
- 现代组织领导力激发团队潜力的秘诀
- 班组协同工作沟通是关键
- 2024秋四年级英语上册 Unit 5 Dinners ready第6课时(Read and write Story time)说课稿 人教PEP
- 《10 我们心中的星》(说课稿)-2023-2024学年四年级上册综合实践活动吉美版
- Unit 5 The colourful world第一课时(说课稿)-2024-2025学年人教PEP版(2024)英语三年级上册
- 2024年秋七年级英语上册 Starter Module 2 My English lesson Unit 3 Im twelve说课稿 (新版)外研版
- 2024年四年级品社下册《圆明园的控诉》说课稿 沪教版
- Unit 1 My classroom PA Let's talk(说课稿)-2024-2025学年人教PEP版英语四年级上册
- 学校安全工作计划及行事历
- 《GMP基础知识培训》课件
- 2025届江苏省无锡市天一中学高一上数学期末质量检测试题含解析
- 数学家华罗庚课件
- 贵州茅台酒股份有限公司招聘笔试题库2024
- 《人工智能基础》课件-AI的前世今生:她从哪里来
- 《纳米技术简介》课件
- 血液透析高钾血症的护理查房
- 思政课国内外研究现状分析
- 2024年青海省西宁市选调生考试(公共基础知识)综合能力题库带答案
- HYT 235-2018 海洋环境放射性核素监测技术规程
评论
0/150
提交评论