版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八章SPSS相关分析与回归分析本章内容8.1相关分析和回归分析概述8.2相关分析8.3偏相关分析8.4线性回归分析8.5曲线估计8.6二项Logistic回归分析8.4线性回归分析8.4.1线性回归分析概述线性回归分析的内容能否找到一个线性组合来说明一组自变量和因变量的关系如果能的话,这种关系的强度有多大,也就是利用自变量的线性组合来预测因变量的能力有多强整体解释能力是否具有统计上的显著性意义在整体解释能力显著的情况下,哪些自变量有显著意义回归分析的一般步骤确定回归方程中的解释变量(自变量)和被解释变量(因变量)确定回归方程对回归方程进行各种检验利用回归方程进行预测趋向中间高度的回归回归这个术语是由英国著名统计学家FrancisGalton在19世纪末期研究孩子及其父母的身高时提出来的。Galton发现身材高的父母,他们的孩子身材也高。但这些孩子平均起来并不像他们的父母那样高。对于比较矮的父母情形也类似:他们的孩子比较矮,但这些孩子的平均身高要比他们的父母的平均身高高。Galton把这种孩子的身高向平均值靠近的趋势称为一种回归效应,而他发展的研究两个数值变量的方法称为回归分析回归分析与相关分析的区别相关分析中,变量x
变量y处于平等的地位;回归分析中,变量y称为因变量,处在被解释的地位,x称为自变量,用于预测因变量的变化相关分析中所涉及的变量x和y都是随机变量;回归分析中,因变量y是随机变量,自变量x
是非随机的确定变量相关分析主要是描述两个变量之间线性关系的密切程度;回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制回归模型的类型8.4.2线性回归模型一元线性回归模型的数学模型:
其中x为自变量;y为因变量;为截距,即常量;为回归系数,表明自变量对因变量的影响程度。误差项是随机变量,反映了除x和y之间的线性关系之外的随机因素对y的影响,是不能由x和y之间的线性关系所解释的变异性一元线性回归模型(基本假定)x=x3时的E(y)x=x2时y的分布x=x1时y的分布x=x2时的E(y)x3x2x1x=x1时的E(y)0xyx=x3时y的分布0+1x回归方程(regressionequation)描述y的平均值或期望值如何依赖于x的方程称为回归方程。一元线性回归方程的形式如下
E(y)=0+1x方程的图示是一条直线,也称为直线回归方程0是回归直线在y轴上的截距,是当x=0时y的期望值1是直线的斜率,称为回归系数,表示当x每变动一个单位时,y的平均变动值
用最小二乘法求解方程中的两个参数,得到:多元线性回归模型多元线性回归方程:E(y)=β0+β1x1+β2x2+...+βkxkβ1、β2、βk为偏回归系数。β1表示在其他自变量保持不变的情况下,自变量x1变动一个单位所引起的因变量y的平均变动。
8.4.3线性回归方程的统计检验8.4.3.1回归方程的拟合优度回归直线与各观测点的接近程度称为回归方程的拟合优度,也就是样本观测值聚集在回归线周围的紧密程度。1、离差平方和的分解:建立直线回归方程可知:y的观测值的总变动可由来反映,称为总变差。引起总变差的原因有两个:由于x的取值不同,使得与x有线性关系的y值不同;随机因素的影响。误差的分解
(图示)xyy总离差平方和可分解为即:总离差平方和(SST)=剩余离差平方和(SST)+回归离差平方和(SSR)其中;SSR是由x和y的直线回归关系引起的,可以由回归直线做出解释;SSE是除了x对y的线性影响之外的随机因素所引起的Y的变动,是回归直线所不能解释的。2、可决系数(判定系数、决定系数)
回归平方和在总离差平方和中所占的比例可以作为一个统计指标,用来衡量X与Y的关系密切程度以及回归直线的代表性好坏,称为可决系数。对于一元线性回归方程:对于多元线性回归方程:
在多元线性回归分析中,引起判定系数增加的原因有两个:一个是方程中的解释变量个数增多,另一个是方程中引入了对被解释变量有重要影响的解释变量。如果某个自变量引入方程后对因变量的线性解释有重要贡献,那么必然会使误差平方和显著减小,并使平均的误差平方和也显著减小,从而使调整的判定系数提高。所以在多元线性回归分析中,调整的判定系数比判定系数更能准确的反映回归方程的拟合优度。8.4.3.2回归方程的显著性检验(方差分析F检验)回归方程的显著性检验是要检验被解释变量与所有的解释变量之间的线性关系是否显著。对于一元线性回归方程,检验统计量为:对于多元线性回归方程,检验统计量为:8.4.3.3回归系数的显著性检验(t检验)回归系数的显著性检验是要检验回归方程中被解释变量与每一个解释变量之间的线性关系是否显著。对于一元线性回归方程,检验统计量为:
对于多元线性回归方程,检验统计量为:8.4.3.4残差分析
残差是指由回归方程计算得到的预测值与实际样本值之间的差距,定义为:
对于线性回归分析来讲,如果方程能够较好的反映被解释变量的特征和规律性,那么残差序列中应不包含明显的规律性。残差分析包括以下内容:残差服从正态分布,其平均值等于0;残差取值与X的取值无关;残差不存在自相关;残差方差相等。
1、对于残差均值和方差齐性检验可以利用残差图进行分析。如果残差均值为零,残差图的点应该在纵坐标为0的中心的带状区域中随机散落。如果残差的方差随着解释变量值(或被解释变量值)的增加呈有规律的变化趋势,则出现了异方差现象。2、DW检验。DW检验用来检验残差的自相关。检验统计量为:
DW=2表示无自相关,在0-2之间说明存在正自相关,在2-4之间说明存在负的自相关。一般情况下,DW值在1.5-2.5之间即可说明无自相关现象。8.4.3.5多重共线性分析
多重共线性是指解释变量之间存在线性相关关系的现象。测度多重共线性一般有以下方式:1、容忍度:其中,是第i个解释变量与方程中其他解释变量间的复相关系数的平方,表示解释变量之间的线性相关程度。容忍度的取值范围在0-1之间,越接近0表示多重共线性越强,越接近1表示多重共线性越弱。2、方差膨胀因子VIF。方差膨胀因子是容忍度的倒数。VIF越大多重共线性越强,当VIF大于等于10时,说明存在严重的多重共线性。
8.4.3线性回归分析的基本操作(1)选择菜单Analyze-Regression-Linear,出现窗口:(2)选择被解释变量进入Dependent框。(3)选择一个或多个解释变量进入Independent(s)框。(4)在Method框中选择回归分析中解释变量的筛选策略。其中Enter表示所选变量强行进入回归方程,是SPSS默认的策略,通常用在一元线性回归分析中;Remove表示从回归方程中剔除所选变量;Stepwise表示逐步筛选策略;Backward表示向后筛选策略;Forward表示向前筛选策略。注:多元回归分析中,变量的筛选一般有向前筛选、向后筛选、逐步筛选三种基本策略。向前筛选(Forward
)策略:解释变量不断进入回归方程的过程。首先,选择与被解释变量具有最高线性相关系数的变量进入方程,并进行回归方程的各种检验;然后,在剩余的变量中寻找与被解释变量偏相关系数最高且通过检验的变量进入回归方程,并对新建立的回归方程进行各种检验;这个过程一直重复,直到再也没有可进入方程的变量为止。向后筛选(Backward
)策略:变量不断剔除出回归方程的过程。首先,所有变量全部引入回归方程,并对回归方程进行各种检验;然后,在回归系数显著性检验不显著的一个或多个变量中,剔除t检验值最小的变量,并重新建立回归方程和进行各种检验;如果新建回归方程中所有变量的回归系数检验都显著,则回归方程建立结束。否则按上述方法再一次剔除最不显著的变量,直到再也没有可剔除的变量为止。逐步筛选(Stepwise
)策略:在向前筛选策略的基础上结合向后筛选策略,在每个变量进入方程后再次判断是否存在应该剔除出方程的变量。因此,逐步筛选策略在引入变量的每一个阶段都提供了再剔除不显著变量的机会。(5)第三和第四步中确定的解释变量及变量筛选策略可放置在不同的块(Block)中。通常在回归分析中不止一组待进入方程的解释变量和相应的筛选策略,可以单击Next和Previous按钮设置多组解释变量和变量筛选策略并放置在不同的块中。(6)选择一个变量作为条件变量放到Selection
Variable框中,并单击Rule按钮给定一个判断条件。只有变量值满足判定条件的样本才参与线性回归分析。(7)在CaseLabels框中指定哪个变量作为样本数据点的标志变量,该变量的值将标在回归分析的输出图形中。8.4.4线性回归分析的其他操作1、Statistics按钮,出现的窗口可供用户选择更多的输出统计量。(1)Estimates:SPSS默认输出项,输出与回归系数相关的统计量。包括回归系数(偏回归系数)、回归系数标准误差、标准化回归系数、回归系数显著性检验的t统计量和概率p值,各解释变量的容忍度。(2)ConfidenceIntervals:输出每个非标准化回归系数95%的置信区间。(3)Descriptive:输出各解释变量和被解释变量的均值、标准差、相关系数矩阵及单侧检验概率p值。(4)Modelfit:SPSS默认输出项,输出判定系数、调整的判定系数、回归方程的标准误差、回归方程显著F检验的方程分析表。(5)Rsquaredchange:输出每个解释变量进入方程后引起的判定系数的变化量和F值的变化量。(6)Partandpartialcorrelation:输出方程中各解释变量与被解释变量之间的简单相关、偏相关系数。(7)Covariancematrix:输出方程中各解释变量间的相关系数、协方差以及各回归系数的方差。(8)CollinearityDiagnostics:多重共线性分析,输出各个解释变量的容忍度、方差膨胀因子、特征值、条件指标、方差比例等。(9)在Residual框中:Durbin-waston表示输出DW检验值;CasewiseDiagnostic表示输出标准化残差绝对值大于等于3(SPSS默认值)的样本数据的相关信息,包括预测值、残差、杠杆值等。2、Options选项,出现的窗口可供用户设置多元线性回归分析中解释变量筛选的标准以及缺失值的处理方式。3、Plot选项,出现的窗口用于对残差序列的分析。(1)窗口左边框中各变量名的含义是:DEPENDNT表示被解释变量,*ZPRED表示标准化预测值,*ZRESID表示标准化残差,*DRESID表示剔除残差,*ADJPRED表示调整的预测值,*SRESID表示学生化残差,*SDRESID表示剔除学生化残差。(2)绘制多对变量的散点图,可根据需要在scatter框中定义散点图的纵坐标和横坐标变量。(3)在StandardizedResidualPlots框中选择Histogram选项绘制标准化残差序列的直方图;选择Normalprobabilityplot绘制标准化残差序列的正态分布累计概率图。选择Produceallpartial
plots选项表示依次绘制被解释变量和各个解释变量的散点图。4、Save选项,该窗口将回归分析的某些结果以SPSS变量的形式保存到数据编辑窗口中,并可同时生成XML格式的文件,便于分析结果的网络发布。(1)PredictedValues框中:保存非标准化预测值、标准化预测值、调整的预测值和预测值的均值标准误差。(2)Distance框中:保存均值或个体预测值95%(默认)置信区间的下限值和上限值。(3)Residual框中:保存非标准化残差、标准化残差等。(4)InfluenceStatistics框中:保存剔除第i个样本后统计量的变化量。5、WSL选项,采用加权最小二乘法替代普通最小二乘法估计回归参数,并指定一个变量作为权重变量。以高校科研研究数据为例,建立回归方程研究
1、课题总数受论文数的影响2、以课题总数为被解释变量,解释变量为投入人年数(X2)、受投入高级职称的人年数(X3)、投入科研事业费(X4)、专著数(X6)、论文数(X7)、获奖数(X8)。(1)解释变量采用强制进入策略(Enter),并做多重共线性检测。(2)解释变量采用向后筛选策略让SPSS自动完成解释变量的选择。(3)解释变量采用逐步筛选策略让SPSS自动完成解释变量的选择。
8.4.5应用举例1、为研究收入和支出的关系,收集1978-2002年我国的年人均可支配收入和年人均消费性支出数据,研究收入与支出之间是否具有较强的线性关系。2、以年人均支出和教育数据为例,建立回归方程研究年人均消费支出、恩格尔系数、在外就餐、教育支出、住房人均使用面积受年人均可支配收入的影响。练习8.5曲线估计8.5.1曲线估计概述变量间的相关关系中,并不总是表现出线性关系,非线性关系也是极为常见的。变量之间的非线性关系可以划分为本质线性关系和本质非线性关系。本质线性关系是指变量关系形式上虽然呈非线性关系,但可通过变量变换为线性关系,并最终可通过线性回归分析建立线性模型。本质非线性关系是指变量关系不仅形式上呈非线性关系,而且也无法变换为线性关系。本节的曲线估计是解决本质线性关系问题的。常见的本质线性模型有:1、二次曲线(Quadratic),方程为,变量变换后的方程为2、复合曲线(Compound),方程为,变量变换后的方程为3、增长曲线(Growth),方程为,变量变换后的方程为4、对数曲线(Logarithmic),方程为,变量变换后的线性方程为5、三次曲线(Cubic),方程为,变量变换后的方程为6、S曲线(S),方程为,变量变换后的方程为7、指数曲线(Exponential),方程为,变量变换后的线性方程为8、逆函数(Inverse),方程为变量变换后的方程为9、幂函数(Power),方程为变量变换后的方程为10、逻辑函数(Logistic),方程为变量变换后的线性方程为
SPSS曲线估计中,首先,在不能明确究竟哪种模型更接近样本数据时,可在多种可选择的模型中选择几种模型;然后SPSS自动完成模型的参数估计,并输出回归方程显著性检验的F值和概率p值、判定系数R2等统计量;最后,以判定系数为主要依据选择其中的最优模型,并进行预测分析等。另外,SPSS曲线估计还可以以时间为解释变量实现时间序列的简单回归分析和趋势外推分析。8.5.2曲线估计的基本操作可通过绘制并观察样本数据的散点图粗略确定被解释变量和解释变量之间的相关关系,为曲线拟合中的模型选择提供依据。SPSS曲线估计的基本操作步骤是:(1)选择菜单Analyze-Regression-CurveEstimation,出现窗口如下页所示。(2)把被解释变量选到Dependent框中。(3)曲线估计中的解释变量可以是相关因素变量也可是时间变量。如果解释变量为相关因素变量,则选择Variable选项,并把一个解释变量指定到Independent框;如果选择Time参数则表示解释变量为时间变量。(4)在Models中选择几种模型。(5)选择PlotModels选项绘制回归线;选择DisplayANOVAtable输出各个模型的方差分析表和各回归系数显著性检验结果。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025公租房代建合同书
- 2025年度知识产权转让合同服务内容丰富3篇
- 办公家具租赁合同内容
- 二零二五年度知识产权回购合同样本3篇
- 学校食堂炊事员聘用合同
- 眼镜店广告制作安装合同
- 2025标准饭店经营合同范本
- 二零二五年度防火门产品安全标准制定合同3篇
- 西宁市购物中心租赁合同
- 亲子游戏服装租赁协议模板
- 燃气锅炉(设施)低氮改造技术规范
- 2023年服务交付经理年终总结及年后展望
- 2022年一级建造师《机电》考试宝典
- 2023年高考数学专项练习痛点问题之概率统计经典解答题含解析
- 物业管理劳务外包合同范本
- 消费者心理与行为分析PPT(第四版)完整全套教学课件
- 小学四年级语文下册全书背诵内容
- 2023-2024学年福建省漳州市初中语文七年级上册期末模考试题
- 全国小学语文研究《低年级作文 》精品课件写话教学课件
- 附录常见感叹词及用法
- GB/T 21709.5-2008针灸技术操作规范第5部分:拔罐
评论
0/150
提交评论