




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,正方形ABCD的边长为8,点M在边DC上,且,点N是边AC上一动点,则线段的最小值为A.8B.C.D.102.下列说法正确的是()A.若两个向量相等则起点相同,终点相同B.零向量只有大小,没有方向C.如果四边形ABCD是平行四边形,那么=D.在平行四边形ABCD中,﹣=3.某公司承担了制作600个广州亚运会道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了10个,因此提前5天完成任务,根据题意,下列方程正确的是()A. B.C. D.4.若x<y,则下列结论不一定成立的是()A.x﹣3<y﹣3 B.﹣5x>﹣5y C.﹣ D.x2<y25.已知等腰三角形的一个角为72度,则其顶角为()A. B.C. D.或6.若实数使关于的不等式组有且只有四个整数解,且实数满足关于的方程的解为非负数,则符合条件的所有整数的和为()A.1 B.2 C.-2 D.-37.方程x2=2x的解是()A.x=2 B.x1=,x2=0 C.x1=2,x2=0 D.x=08.如图1反映的过程是:矩形ABCD中,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,S△ABP=y.则矩形ABCD的周长是()A.6 B.12 C.14 D.159.如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm10.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和二、填空题(每小题3分,共24分)11.如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为.12.若a=,b=,则=_______.13.计算:=_____________.14.在□ABCD中,∠A,∠B的度数之比为2:7,则∠C=__________.15.若是一个完全平方式,则______.16.分式与的最简公分母是__________.17.已知矩形的长a=,宽b=,则这个矩形的面积是_____.18.如图,小明作出了边长为2的第1个正△,算出了正△的面积.然后分别取△的三边中点、、,作出了第2个正△,算出了正△的面积;用同样的方法,作出了第3个正△,算出了正△的面积,由此可得,第2个正△的面积是__,第个正△的面积是__.三、解答题(共66分)19.(10分)已知关于的一元二次方程:;(1)求证:无论为何值,方程总有实数根;(2)若方程的一个根是2,求另一个根及的值.20.(6分)第二十四届冬季奥林匹克运动会将于2022年在北京市和张家口市举行.为了调查学生对冬奥知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.a.甲校20名学生成绩的频数分布表和频数分布直方图如下:b.甲校成绩在的这一组的具体成绩是:8788888889898989c.甲、乙两校成绩的平均分、中位数、众数、方差如下:根据以上图表提供的信息,解答下列问题:(1)表1中a=;表2中的中位数n=;(2)补全图1甲校学生样本成绩频数分布直方图;(3)在此次测试中,某学生的成绩是87分,在他所属学校排在前10名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是;(4)假设甲校200名学生都参加此次测试,若成绩80分及以上为优秀,估计成绩优秀的学生人数为__________.21.(6分)如图,在等边△ABC中,点F、E分别在BC、AC边上,AE=CF,AF与BE相交于点P.(1)求证:AEP∽BEA;(2)若BE=3AE,AP=2,求等边ABC的边长.22.(8分)如图,平行四边形ABCD中,AB=6cm,BC=10cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE、DF.(1)求证:四边形CEDF是平行四边形;(2)当AE的长是多少时,四边形CEDF是矩形?23.(8分)已知三个实数x,y,z满足,求的值.24.(8分)如图,已知、分别是平行四边形的边、上的点,且.求证:四边形是平行四边形.25.(10分)某校八(1)班次数学测验(卷面满分分)成绩统计,有的优生,他们的人均分为分,的不及格,他们的人均分为分,其它同学的人均分为分,求全班这次测试成绩的平均分.26.(10分)如图,中,是边上一点,,,,点,分别是,边上的动点,且始终保持.(1)求的长;(2)若四边形为平行四边形时,求的周长;(3)将沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,求线段的长.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
要使DN+MN最小,首先应分析点N的位置.根据正方形的性质:正方形的对角线互相垂直平分.知点D的对称点是点B,连接MB交AC于点N,此时DN+MN最小值即是BM的长.【详解】解:根据题意,连接BD、BM,则BM就是所求DN+MN的最小值,在Rt△BCM中,BC=8,CM=6根据勾股定理得:BM=,即DN+MN的最小值是10;故选:D.【点睛】本题考查了轴对称问题以及正方形的性质,难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.2、C【解析】
根据平面向量的性质即可判断.【详解】A、错误.两个向量相等还可以平行的;B、错误.向量是有方向的;C、正确.平行四边形的对边平行且相等;D、错误.应该是,+=;故选:C.【点睛】本题考查平面向量、平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3、A【解析】
关键描述语是:实际平均每天比原计划多制作了10个,根据等量关系列式.【详解】解:设原计划x天完成,根据题意可得:,故选:A.【点睛】此题考查分式方程的应用,涉及的公式:工作效率=工作量÷工作时间,解题时找到等量关系是列式的关键4、D【解析】
根据不等式的性质分析判断即可.【详解】解:A、不等式x<y的两边同时减去3,不等式仍成立,即x﹣3<y﹣3,故本选项错误;B、不等式x<y的两边同时乘以﹣5,不等号方向改变.即:﹣5x>﹣5y,故本选项错误;C、不等式x<y的两边同时乘以﹣,不等号方向改变.即:﹣x>﹣y,故本选项错误;D、不等式x<y的两边没有同时乘以相同的式子,故本选项正确.故选:D.【点睛】考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.5、D【解析】
分两种情况讨论:72度为顶角或为底角,依次计算即可.【详解】分两种情况:①72度为顶角时,答案是72°;②72度为底角时,则顶角度数为180°-72×2=36°.故选D.【点睛】本题主要考查了等腰三角形的性质,已知提供的度数并没有说明其为底角还是顶角,所以需要分类讨论解决.6、A【解析】
先解不等式组,然后根据不等式组解集的情况即可列出关于m的不等式,从而求出不等式组中m的取值范围;然后解分式方程,根据分式方程解的情况列出关于m的不等式,从而求出分式方程中m的取值范围,然后取公共解集,即可求出结论.【详解】解:不等式组的解集为∵关于的不等式组有且只有四个整数解∴解得:分式方程的解为:∵关于的方程的解为非负数,∴解得:m≤2且m≠1综上所述:且m≠1∴符合条件的所有整数的和为(-1)+0+2=1故选A.【点睛】此题考查的是含参数的不等式组和含参数的分式方程,掌握根据不等式组解集的情况求参数的取值范围和分式方程解的情况求参数的取值范围是解决此题的关键.7、C【解析】
先移项得到x1-1x=0,再把方程左边进行因式分解得到x(x-1)=0,方程转化为两个一元一次方程:x=0或x-1=0,即可得到原方程的解为x1=0,x1=1.【详解】解:∵x1-1x=0,∴x(x-1)=0,∴x=0或x-1=0,∴x1=0,x1=1.故答案为x1=0,x1=1.8、C【解析】试题分析:结合图象可知,当P点在AC上,△ABP的面积y逐渐增大,当点P在CD上,△ABP的面积不变,由此可得AC=5,CD=4,则由勾股定理可知AD=3,所以矩形ABCD的周长为:2×(3+4)=1.考点:动点问题的函数图象;矩形的性质.点评:本题考查的是动点问题的函数图象,解答本题的关键是根据矩形中三角形ABP的面积和函数图象,求出AC和CD的长.9、C【解析】试题分析:解:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故答案为C.考点:平行四边形的性质.10、C【解析】
根据勾股定理得到c1=a1+b1,根据正方形的面积公式、长方形的面积公式计算即可.【详解】设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c1=a1+b1,阴影部分的面积=c1-b1-a(c-b)=a1-ac+ab=a(a+b-c),较小两个正方形重叠部分的长=a-(c-b),宽=a,则较小两个正方形重叠部分底面积=a(a+b-c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选C.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.二、填空题(每小题3分,共24分)11、x>﹣1.【解析】试题分析:根据一次函数的图像可知y随x增大而增大,因此可知不等式的解集为x>-1.考点:一次函数与一元一次不等式12、【解析】
先运用平方差公式把化为(a+b)(a-b),然后将a与b的值代入计算即可求出值.【详解】解:∵=(a+b)(a-b),∴=2×(-2)=.【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.13、【解析】
根据积的乘方和整式的运算法则,先算乘方再算乘法即可得出答案【详解】【点睛】本题考查的是积的乘方和整式的运算法则,能够准确计算是解题的关键。14、40°【解析】分析:平行四边形两组对边分别平行,两直线平行,同旁内角互补.又因为∠A,∠B的度数之比为2:1.所以可求得两角分别是40°,140°,根据平行四边形的两组对角分别相等,可得∠C等于40°.详解:∵ABCD是平行四边形,∴AB∥CD,∠A=∠C,∴∠A+∠B=180°.又∵∠A,∠B的度数之比为2:1,∴∠A=180°×=40°,∠B=180°×=140°,∴∠C=40°.故答案为:40°.点睛:本题考查的是平行四变形的性质:平行四边形两组对边分别平行;平行四边形的两组对角分别相等.15、【解析】
根据完全平方公式的结构特征进行判断即可确定出m的值.【详解】∵x2+2mx+1是一个完全平方式,∴m=±1,故答案为:±1.【点睛】本题考查了完全平方式,熟练掌握完全平方式的结构特征是解题的关键.本题易错点在于:是加上或减去两数乘积的2倍,在此有正负两种情况,要全面分析,避免漏解.16、【解析】
先把分母分解因式,再根据最简公分母定义即可求出.【详解】解:第一个分母可化为(x-1)(x+1)
第二个分母可化为x(x+1)
∴最简公分母是x(x-1)(x+1).故答案为:x(x-1)(x+1)【点睛】此题的关键是利用最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作最简公分母.17、1【解析】
根据矩形的面积公式列出算式,根据二次根式的乘法法则计算,得到答案.【详解】矩形的面积=ab=×=×1××3=1,故答案为:1.【点睛】本题考查的是二次根式的应用,掌握二次根式的乘法法则是解题的关键.18、,【解析】
根据等边三角形的性质求出正△A1B1C1的面积,根据三角形中位线定理得到,根据相似三角形的性质计算即可.【详解】正△的边长,正△的面积,点、、分别为△的三边中点,,,,△△,相似比为,△与△的面积比为,正△的面积为,则第个正△的面积为,故答案为:;.【点睛】本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.三、解答题(共66分)19、(1)详见解析;(2),【解析】
(1)根据根的判别式得出△=(k﹣3)2≥0,从而证出无论k取任何值,方程总有实数根.(2)先把x=2代入原方程,求出k的值,再解这个方程求出方程的另一个根.【详解】(1)证明:(方法一).∴无论为何值时,方程总有实数根.(方法二)将代人方程,等式成立,即是原方程的解,因此,无论为何值时,方程总有实数根,(2)把代人方程解得,解方程得【点睛】本题主要考查了一元二次方程的根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20、(1)1,88.5;(2)见解析;(3)乙,乙的中位数是85,87>85;(4)140【解析】
(1)根据频数分布表和频数分布直方图的信息列式计算即可得到a的值,根据中位数的定义求解可得n的值;
(2)根据题意补全频数分布直方图即可;
(3)根据甲这名学生的成绩为87分,小于甲校样本数据的中位数88.5分,大于乙校样本数据的中位数85分可得;
(4)利用样本估计总体思想求解可得.【详解】(1)a=,由频数分布表和频数分布直方图中的信息可知,排在中间的两个数是88和89,∴,
故答案为:1,88.5;
(2)∵b=20-1-3-8-6=2,
∴补全图1甲校学生样本成绩频数分布直方图如图所示;(3)在此次测试中,某学生的成绩是87分,在他所属学校排在前10名,由表中数据可知该学生是乙校的学生,
理由:乙的中位数是85,87>85,
故答案为:乙,乙的中位数是85,87>85;(4),∴成绩优秀的学生人数为140人,故答案为:140人.【点睛】此题考查频数分布表,频数分布直方图,中位数的计算方法,利用部分估计总体的方法,正确理解题意是解题的关键.21、(1)见解析;(2)1【解析】
(1)根据等边三角形的性质得到AB=AC,∠C=∠CAB=10°,根据全等三角形的性质得到∠ABE=∠CAF,于是得到结论;(2)根据相似三角形的性质即可得到结论.【详解】(1)证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=10°,又∵AE=CF,在△ABE和△CAF中,∴∴∠ABE=∠CAF,∵∠AEB=∠BEA,∴(有两个角对应相等的两个三角形相似);(2)解:∵∴,∵BE=3AE,AP=2,∴AB=1,∴等边的边长是1.【点睛】本题考查了全等三角形的证明方法中的边角边定理(两个三角形中有两条边对应相等,并且这两条边的夹角也对应相等,则这两个三角形全等);两个三角形相似的证明方法之一:两个三角形有两个角对应相等,则这两个三角形相似.熟记并灵活运用这两种方法是解本题的关键.22、(1)见解析;(2)时,四边形CEDF是矩形.【解析】
(1)先证明△GED≌△GFC,从而可得GE=GF,再根据对角线互相平分的四边形是平行四边形即可证得结论;(2)当AE的长是7cm时,四边形CEDF是矩形,理由如下:作AP⊥BC于P,则∠APB=90°,求得BP=3cm,再证明△ABP≌△CDE,可得∠CED=∠APB=90°,再根据有一个角是直角的平行四边形是矩形即可得.【详解】(1)四边形ABCD是平行四边形,∴AD//BF,∴∠DEF=∠CFE,∠EDC=∠FCD,∵GD=GC,∴△GED≌△GFC,∴GE=GF,∵GD=GC,GE=GF,∴四边形CEDF是平行四边形;(2)当AE的长是7cm时,四边形CEDF是矩形,理由如下:作AP⊥BC于P,则∠APB=∠APC=90°,∵∠B=60°,∴∠PAB=90°-∠B=30°,∴BP=AB==3cm,四边形ABCD是平行四边形,∴∠CDE=∠B=60°,DC=AB=6cm,AD=BC=10cm,∵AE=7cm,∴DE=AD-AE=3cm=BP,∴△ABP≌△CDE,∴∠CED=∠APB=90°,又∵四边形CEDF是平行四边形,∴平行四边形CEDF是矩形,即当AE=7cm时,四边形CEDF是矩形.【点睛】本题考查了平行四边形的判定与性质,矩形的判定,全等三角形的判定与性质,熟练掌握相关知识是解题的关键.23、4【解析】
求得到,然后求出,分子分母同除以xyz得,即可求解。【详解】解:∵∴∴分子分母同除以xyz得=4【点睛】本题考查了条件代数式求值问题,关键在于观察条件和所求代数式直接的联系;本题的联系在于倒数的应用和分式基本性质的应用。24、见解析.【解析】
根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出即可.【详解】解:证明:∵四边形是平行四边形,∴,且,∴,∵,∴,∴四边形是平行四边形【点睛】此题考查平行四边形的判定与性质,解题关键在于掌握判定法则25、平均分1【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 书销售返利合同范本
- 2025年武威货车上岗证理论模拟考试题库
- 临街门面房转让合同范本
- 全款分期购房合同范本
- 公路施工单价合同范本
- 出售铁皮房子合同范本
- 分销平移合同范本
- 债券托管合同范本
- 修建电动车车棚合同范本
- 物流园遮雨棚安装施工方案
- 2025年人教版数学五年级下册教学计划(含进度表)
- 宝石学基础全套课件
- 4.7 数学建模活动:生长规律的描述教学设计
- 手术风险及医疗意外险告知流程
- 住宅建筑工程施工重点与难点应对措施方案
- 综合实践活动六年级下册 饮料与健康课件 (共16张PPT)
- 数量金融的概况和历史课件
- 护士职业素养课件
- 专业医院lovo常用文件产品介绍customer presentation
- 叉车日常使用状况点检记录表(日常检查记录)
- ME基础知识培训PPT学习教案
评论
0/150
提交评论