版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年四川省巴中学市恩阳区重点名校初三下学期期末试卷数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣72.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是(
)A.16cm B.18cm C.20cm D.21cm3.如图是正方体的表面展开图,则与“前”字相对的字是()A.认 B.真 C.复 D.习4.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x﹣2﹣1012y830﹣10则抛物线的顶点坐标是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)5.在平面直角坐标系中,点P(m﹣3,2﹣m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6.在武汉市举办的“读好书、讲礼仪”活动中,某学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图,根据图中信息,该班平均每人捐书的册数是()A.3B.3.2C.4D.4.57.有一个数用科学记数法表示为5.2×105,则这个数是()A.520000 B. C.52000 D.52000008.不等式组1-x≤0,3x-6<0A. B. C. D.9.如图,C,B是线段AD上的两点,若,,则AC与CD的关系为()A. B. C. D.不能确定10.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:(1)出租车的速度为100千米/时;(2)客车的速度为60千米/时;(3)两车相遇时,客车行驶了3.75小时;(4)相遇时,出租车离甲地的路程为225千米.其中正确的个数有()A.1个 B.2个 C.3个 D.4个11.如图所示,,结论:①;②;③;④,其中正确的是有()A.1个 B.2个 C.3个 D.4个12.如图,在平行四边形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④ B.②和③ C.③和④ D.②和④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90°的对应点的坐标为_____.14.已知是整数,则正整数n的最小值为___15.等腰中,是BC边上的高,且,则等腰底角的度数为__________.16.如图,BC=6,点A为平面上一动点,且∠BAC=60°,点O为△ABC的外心,分别以AB、AC为腰向形外作等腰直角三角形△ABD与△ACE,连接BE、CD交于点P,则OP的最小值是_____17.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三点都在y=的图象上,则yl,y2,y3的大小关系是_____.(用“<”号填空)18.64的立方根是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知:,,,求证:.20.(6分)(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.21.(6分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2(2)化简:.22.(8分)如图所示,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.求线段MN的长.若C为线段AB上任意一点,满足AC+CB=a(cm),其他条件不变,你能猜想出MN的长度吗?并说明理由.若C在线段AB的延长线上,且满足AC-CB=b(cm),M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.23.(8分)现有A、B两种手机上网计费方式,收费标准如下表所示:计费方式月使用费/元包月上网时间/分超时费/(元/分)A301200.20B603200.25设上网时间为x分钟,(1)若按方式A和方式B的收费金额相等,求x的值;(2)若上网时间x超过320分钟,选择哪一种方式更省钱?24.(10分)已知关于的二次函数(1)当时,求该函数图像的顶点坐标.(2)在(1)条件下,为该函数图像上的一点,若关于原点的对称点也落在该函数图像上,求的值(3)当函数的图像经过点(1,0)时,若是该函数图像上的两点,试比较与的大小.25.(10分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.26.(12分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.27.(12分)如图,我们把一个半圆和抛物线的一部分围成的封闭图形称为“果圆”,已知分别为“果圆”与坐标轴的交点,直线与“果圆”中的抛物线交于两点(1)求“果圆”中抛物线的解析式,并直接写出“果圆”被轴截得的线段的长;(2)如图,为直线下方“果圆”上一点,连接,设与交于,的面积记为,的面积即为,求的最小值(3)“果圆”上是否存在点,使,如果存在,直接写出点坐标,如果不存在,请说明理由
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000105=1.05×10﹣5,故选C.考点:科学记数法.2、C【解析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.3、B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”.故选B.点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.4、C【解析】分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.详解:当或时,,当时,,,解得,二次函数解析式为,抛物线的顶点坐标为,故选C.点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.5、A【解析】
分点P的横坐标是正数和负数两种情况讨论求解.【详解】①m-3>0,即m>3时,2-m<0,所以,点P(m-3,2-m)在第四象限;②m-3<0,即m<3时,2-m有可能大于0,也有可能小于0,点P(m-3,2-m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、B【解析】七年级(1)班捐献图书的同学人数为9÷18%=50人,捐献4册的人数为50×30%=15人,捐献3册的人数为50-6-9-15-8=12人,所以该班平均每人捐书的册数为(6+9×2+12×3+15×4+8×5)÷50=3.2册,故选B.7、A【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】5.2×105=520000,故选A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8、D【解析】试题分析:1-x≤0①3x-6<0②,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.9、B【解析】
由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故选B.【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.10、D【解析】
根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.【详解】由图象可得,出租车的速度为:600÷6=100千米/时,故(1)正确,客车的速度为:600÷10=60千米/时,故(2)正确,两车相遇时,客车行驶时间为:600÷(100+60)=3.75(小时),故(3)正确,相遇时,出租车离甲地的路程为:60×3.75=225千米,故(4)正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.11、C【解析】
根据已知的条件,可由AAS判定△AEB≌△AFC,进而可根据全等三角形得出的结论来判断各选项是否正确.【详解】解:如图:在△AEB和△AFC中,有,∴△AEB≌△AFC;(AAS)∴∠FAM=∠EAN,∴∠EAN-∠MAN=∠FAM-∠MAN,即∠EAM=∠FAN;(故③正确)又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN;(ASA)∴EM=FN;(故①正确)由△AEB≌△AFC知:∠B=∠C,AC=AB;又∵∠CAB=∠BAC,∴△ACN≌△ABM;(故④正确)由于条件不足,无法证得②CD=DN;故正确的结论有:①③④;故选C.【点睛】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.12、D【解析】∵四边形ABCD是平行四边形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②与④不一定成立,∵当四边形是菱形时,②和④成立.故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(﹣3,2)【解析】
作出图形,然后写出点A′的坐标即可.【详解】解答:如图,点A′的坐标为(-3,2).
故答案为(-3,2).
【点睛】本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解.14、1【解析】
因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.【详解】∵,且是整数,
∴是整数,即1n是完全平方数;
∴n的最小正整数值为1.
故答案为:1.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.15、,,【解析】
分三种情况:①点A是顶角顶点时,②点A是底角顶点,且AD在△ABC外部时,③点A是底角顶点,且AD在△ABC内部时,再结合直角三角形中,30°的角所对的直角边等于斜边的一半即可求解.【详解】①如图,若点A是顶角顶点时,∵AB=AC,AD⊥BC,∴BD=CD,∵,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=;②如图,若点A是底角顶点,且AD在△ABC外部时,∵,AC=BC,∴,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如图,若点A是底角顶点,且AD在△ABC内部时,∵,AC=BC,∴,∴∠C=30°,∴∠BAC=∠ABC=(180°-30°)=75°;综上所述,△ABC底角的度数为45°或15°或75°;故答案为,,.【点睛】本题考查了等腰三角形的性质和直角三角形中30°的角所对的直角边等于斜边的一半的性质,解题的关键是要分情况讨论.16、【解析】试题分析:如图,∵∠BAD=∠CAE=90°,∴∠DAC=∠BAE,在△DAC和△BAE中,∵AD=AB,∠DAC=∠BAE,AC=AE,∴△DAC≌△BAE(SAS),∴∠ADC=∠ABE,∴∠PDB+∠PBD=90°,∴∠DPB=90°,∴点P在以BC为直径的圆上,∵外心为O,∠BAC=60°,∴∠BOC=120°,又BC=6,∴OH=,所以OP的最小值是.故答案为.考点:1.三角形的外接圆与外心;2.全等三角形的判定与性质.17、y3<y1<y1【解析】
根据反比例函数的性质k<0时,在每个象限,y随x的增大而增大,进行比较即可.【详解】解:k=-1<0,∴在每个象限,y随x的增大而增大,∵-3<-1<0,∴0<y1<y1.又∵1>0∴y3<0∴y3<y1<y1故答案为:y3<y1<y1【点睛】本题考查的是反比例函数的性质,理解性质:当k>0时,在每个象限,y随x的增大而减小,k<0时,在每个象限,y随x的增大而增大是解题的关键.18、4.【解析】
根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、证明见解析;【解析】
根据HL定理证明Rt△ABC≌Rt△DEF,根据全等三角形的性质证明即可.【详解】,BE为公共线段,∴CE+BE=BF+BE,即又,在与中,≌∴AC=DF.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.20、(1)y=14x2-2x+3【解析】试题分析:(1)首先利用根与系数的关系得出:x1+x2=8试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=,∴该抛物线解析式为:y=;.(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此时最大值为:,②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APF﹣S△CPF===,当t=8时,取最大值,最大值为:12,综上可知,当0<t≤8时,△APC面积的最大值为12;(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①当2<t≤6时,AQ=t,PQ=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>6时,AQ′=t,PQ′=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=1,∴t=或t=或t=1.考点:二次函数综合题.21、(1)2;(2)x﹣y.【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.详解:(1)原式=3﹣4﹣2×+4=2;(2)原式=•=x﹣y.点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22、(1)7cm(2)若C为线段AB上任意一点,且满足AC+CB=a(cm),其他条件不变,则MN=a(cm);理由详见解析(3)b(cm)【解析】
(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可.(2)据题意画出图形即可得出答案.(3)据题意画出图形即可得出答案.【详解】(1)如图∵AC=8cm,CB=6cm,∴AB=AC+CB=8+6=14cm,又∵点M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∴MN=AC+BC=(AC+BC)=AB=7cm.答:MN的长为7cm.(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,则MN=cm,理由是:∵点M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵AC+CB=acm,∴MN=AC+BC=(AC+BC)=cm.(3)解:如图,∵点M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵AC-CB=bcm,∴MN=AC-BC=(AC-BC)=cm.考点:两点间的距离.23、(1)x=270或x=520;(2)当320<x<520时,选择方式B更省钱;当x=520时,两种方式花钱一样多;当x>520时选择方式A更省钱.【解析】
(1)根据收取费用=月使用费+超时单价×超过时间,可找出yA、yB关于x的函数关系式;根据方式A和方式B的收费金额相等,分类讨论,列出方程,求解即可.
(2)列不等式,求解即可得出结论.【详解】(1)当0≤x≤120时,yA与x之间的函数关系式为:y当x>120时,yA与x之间的函数关系式为:y即y当0≤x≤320时,yB与x之间的函数关系式为:y当x>320时,yB与x之间的函数关系式为:y即y方式A和方式B的收费金额相等,当0≤x≤120时,y当120≤x≤320时,0.2x+6=60,解得:x=270.当x>320时,0.2x+6=0.25x-20,解得:x=520.即x=270或x=520时,方式A和方式B的收费金额相等.(2)若上网时间x超过320分钟,0.2x+6>0.25x-20,解得320<x<520,当320<x<520时,选择方式B更省钱;0.2x+6=0.25x-20,解得x=520,当x=520时,两种方式花钱一样多;0.2x+6<0.25x-20,解得x>520,当x>520时选择方式A更省钱.【点睛】考查一次函数的应用,列出函数关系式是解题的关键.注意分类讨论,不要漏解.24、(1),顶点坐标(1,-4);(2)m=1;(3)①当a>0时,y2>y1,②当a<0时,y1>y2.【解析】试题分析:(1)把a=2,b=4代入并配方,即可求出此时二次函数图象的顶点坐标;(2)由题意把(m,t)和(-m,-t)代入(1)中所得函数的解析式,解方程组即可求得m的值;(3)把点(1,0)代入可得b=a-2,由此可得抛物线的对称轴为直线:,再分a>0和a<0两种情况分别讨论即可y1和y2的大小关系了.试题解析:(1)把a=2,b=4代入得:,∴此时二次函数的图象的顶点坐标为(1,-4);(2)由题意,把(m,t)和(-m,-t)代入得:①,②,由①+②得:,解得:;(3)把点(1,0)代入得a-b-2=0,∴b=a-2,∴此时该二次函数图象的对称轴为直线:,①当a>0时,,,∵此时,且抛物线开口向上,∴中,点B距离对称轴更远,∴y1<y2;②当a<0时,,,∵此时,且抛物线开口向下,∴中,点B距离对称轴更远,∴y1>y2;综上所述,当a>0时,y1<y2;当a<0时,y1>y2.点睛:在抛物线上:(1)当抛物线开口向上时,抛物线上的点到对称轴的距离越远,所对应的函数值就越大;(2)当抛物线开口向下时,抛物线上的点到对称轴的距离越近,所对应的函数值就越大;25、证明见试题解析.【解析】试题分析:首先根据∠ACD=∠BCE得出∠ACB=∠DCE,结合已知条件利用SAS判定△ABC和△DEC全等,从而得出答案.试题解析:∵∠ACD=∠BCE∴∠ACB=∠DCE又∵AC=DCBC=EC∴△ABC≌△DEC∴∠A=∠D考点:三角形全等的证明26、(1)y=﹣x2+x+1;(2)①-;②点P的坐标(6,﹣14)(4,﹣5);(3).【解析】
(1)根据待定系数法,可得函数解析式;
(2)根据垂线间的关系,可得PA,PB的解析式,根据解方程组,可得P点坐标;
(3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【详解】解:(1)将A,B点坐标代入,得,解得,抛物线的解析式为y=;(2)①由直线y=2x﹣1与直线y=mx+2互相垂直,得2m=﹣1,即m=﹣;故答案为﹣;②AB的解析式为当PA⊥AB时,PA的解析式为y=﹣2x﹣2,联立PA与抛物线,得,解得(舍),,即P(6,﹣14);当PB⊥AB时,PB的解析式为y=﹣2x+3,联立PB与抛物线,得,解得(舍),即P(4,﹣5),综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);(3)如图:,∵M(t,﹣t2+t+1),Q(t,t+),∴MQ=﹣t2+S△MAB=MQ|xB﹣xA|=(﹣t2+)×2=﹣t2+,当t=0时,S取最大值,即M(0,1).由勾股定理,得AB==,设M到AB的距离为h,由三角形的面积,得h==.点M到直线AB的距离的最大值是.【点睛】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键27、(1);6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度注塑机设备转让及市场占有率提升合同样本4篇
- 2025年度材料安全评价及风险评估合同范本3篇
- 2025年度新能源项目土地租赁经营合同范本4篇
- 2025年度生态环保型安置房建设一体化服务合同3篇
- 2024版海鲜采购合同
- 2025年度外墙艺术装饰工程承揽合同4篇
- 2024维修公司环保设备维修人员劳动合同范本3篇
- 2024跨国物流仓储服务全面合作框架协议
- 2025年度物流企业绿色包装材料采购合同4篇
- 2025年度临时设施搭建与场地租赁合同3篇
- 2024版塑料购销合同范本买卖
- 【高一上】【期末话收获 家校话未来】期末家长会
- JJF 2184-2025电子计价秤型式评价大纲(试行)
- GB/T 44890-2024行政许可工作规范
- 有毒有害气体岗位操作规程(3篇)
- 儿童常见呼吸系统疾病免疫调节剂合理使用专家共识2024(全文)
- 2025届山东省德州市物理高三第一学期期末调研模拟试题含解析
- 《华润集团全面预算管理案例研究》
- 2024-2025高考英语全国卷分类汇编之完型填空(含答案及解析)
- 二年级下册加减混合竖式练习360题附答案
- 苏教版五年级数学下册解方程五种类型50题
评论
0/150
提交评论