2023年江苏省扬州树人学校八年级数学第二学期期末预测试题含解析_第1页
2023年江苏省扬州树人学校八年级数学第二学期期末预测试题含解析_第2页
2023年江苏省扬州树人学校八年级数学第二学期期末预测试题含解析_第3页
2023年江苏省扬州树人学校八年级数学第二学期期末预测试题含解析_第4页
2023年江苏省扬州树人学校八年级数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.某中学规定学生的学期体育成绩满分为100分,其中课外锻炼占20%,期中考试成绩占40%,期末考试成绩占40%。小乐的三项成绩(百分制)依次为95,90,85,则小彤这学期的体育成绩为是()A.85 B.89 C.90 D.952.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)中正确的有A.4个 B.3个 C.2个 D.1个3.在下列图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.分式方程有增根,则的值为A.0和3 B.1 C.1和 D.35.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程可能是()A.x2-3x+2=0 B.x2+3x+2=0 C.x2+3x-2=0 D.x2-2x+3=06.下列各式中的最简二次根式是()A. B. C. D.7.矩形是轴对称图形,对称轴可以是()A. B. C. D.8.下列各组数中不能作为直角三角形的三边长的是()A.7,24,25 B.,4,5 C.,1, D.40,50,609.如图,BE、CF分别是△ABC边AC、AB上的高,M为BC的中点,EF=5,BC=8,则△EFM的周长是()A.21 B.18 C.15 D.1310.如图,已知四边形ABCD是平行四边形,下列结论中错误的是()A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形C.当AC=BD时,它是矩形 D.当∠ABC=90°时,它是正方形11.下列说法正确的是()A.某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖.B.为了解全国中学生的睡眠情况,应该采用普查的方式.C.若甲数据的方差s甲2=0.01,乙数据的方差s乙2=0.1,则乙数据比甲数据稳定.D.一组数据3,1,4,1,1,6,10的众数和中位数都是1.12.如图,四边形ABCD为菱形,AB=5,BD=8,AE⊥CD于E,则AE的长为()A. B. C. D.二、填空题(每题4分,共24分)13.已知反比例函数y=(k为常数,k≠2)的图像有一支在第二象限,那么k的取值范围是_______.14.学校位于小亮家北偏东35方向,距离为300m,学校位于大刚家南偏东85°方向,距离也为300m,则大刚家相对于小亮家的位置是________.15.如果代数式有意义,那么字母x的取值范围是_____.16.如图,已知A点的坐标为,直线与y轴交于点B,连接AB,若,则____________.17.已知函数y=3x的图象经过点A(-1,y1),点B(-2,y2),则y1____y2(填“>”或“<”或“=”).18.如图,在菱形中,,,点在上,以为对角线的所有中,最小的值是______.三、解答题(共78分)19.(8分)如图①,在平面直角坐标系中,点,的坐标分别为,,点在直线上,将沿射线方向平移,使点与点重合,得到(点、分别与点、对应),线段与轴交于点,线段,分别与直线交于点,.(1)求点的坐标;(2)如图②,连接,四边形的面积为__________(直接填空);(3)过点的直线与直线交于点,当时,请直接写出点的坐标.20.(8分)如图,在中,,请用尺规过点作直线,使其将分割成两个等腰三角形.(保留作图痕迹,不写作法.并把作图痕迹用黑色签字笔加黑).21.(8分)如图,已知一次函数y1=ax+b的图象与x轴、y轴分别交于点D、C,与反比例函数y2=的图象交于A、B两点,且点A的坐标是(1,3)、点B的坐标是(3,m).(1)求一次函数与反比例函数的解析式;(2)求C、D两点的坐标,并求△AOB的面积;(3)根据图象直接写出:当x在什么取值范围时,y1>y2?22.(10分)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.23.(10分)如图,将平行四边形ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.求证:四边形CEDF是平行四边形.24.(10分)州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)a=,并写出该扇形所对圆心角的度数为,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?25.(12分)如图,在平面直角坐标系中,直线分别与轴、轴交于点,且与直线交于.(1)求出点的坐标(2)当时,直接写出x的取值范围.(3)点在x轴上,当△的周长最短时,求此时点D的坐标(4)在平面内是否存在点,使以为顶点的四边形是平行四边形?若存在,直接写出点的坐标;若不存在,请说明理由.26.四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.求∠BAD的度数;

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据加权平均数的定义即可求解.【详解】由题意得小彤这学期的体育成绩为是20%×95+40%×90+40%×95=89,故选B.【点睛】此题主要考查加权平均数的求解,解题的关键是熟知加权平均数的定义.2、B【解析】

根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,

利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF=S△DAE,则S△ABF-S△AOF=S△DAE-S△AOF,即S△AOB=S四边形DEOF.【详解】解:∵四边形ABCD为正方形,

∴AB=AD=DC,∠BAD=∠D=90°,

而CE=DF,

∴AF=DE,

在△ABF和△DAE中

∴△ABF≌△DAE,

∴AE=BF,所以(1)正确;

∴∠ABF=∠EAD,

而∠EAD+∠EAB=90°,

∴∠ABF+∠EAB=90°,

∴∠AOB=90°,

∴AE⊥BF,所以(2)正确;

连结BE,

∵BE>BC,

∴BA≠BE,

而BO⊥AE,

∴OA≠OE,所以(3)错误;

∵△ABF≌△DAE,

∴S△ABF=S△DAE,

∴S△ABF-S△AOF=S△DAE-S△AOF,

∴S△AOB=S四边形DEOF,所以(4)正确.

故选B.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.3、C【解析】

根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A.不是轴对称图形,是中心对称图形,不合题意;B.是轴对称图形,不是中心对称图形,不合题意;C.是轴对称图形,也是中心对称图形,符合题意;D.不是轴对称图形,是中心对称图形,不合题意,故选C.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、D【解析】

等式两边同乘以最简公分母后,化简为一元一次方程,因为有增根可能为x1=1或x1=﹣1分别打入一元一次方程后求出m,再验证m取该值时是否有根即可.【详解】∵分式方程-1=有增根,∴x﹣1=0,x+1=0,∴x1=1,x1=﹣1.两边同时乘以(x﹣1)(x+1),原方程可化为x(x+1)﹣(x﹣1)(x+1)=m,整理得,m=x+1,当x=1时,m=1+1=2;当x=﹣1时,m=﹣1+1=0,当m=0,方程无解,∴m=2.故选D.5、A【解析】

先计算出x1+x2=3,x1x2=2,然后根据根与系数的关系得到满足条件的方程可为x2-3x+2=1.【详解】解:∵x1=1,x2=2,

∴x1+x2=3,x1x2=2,

∴以x1,x2为根的一元二次方程可为x2-3x+2=1.

故选A.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=−,x1x2=.6、C【解析】最简二次根式必须满足两个条件:①被开方数中不含开得尽方的因数(或因式);②被开方数中不含分母;由此可知选项A、B、D都不符合要求,只有C选项符合.故选C.7、D【解析】

根据轴对称图形的概念求解.矩形是轴对称图形,可以左右重合和上下重合.【详解】解:矩形是轴对称图形,可以左右重合和上下重合,故可以是矩形的对称轴,故选:D.【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.8、D【解析】

根据勾股定理的逆定理依次计算各项后即可解答.【详解】选项A,∵72+242=252,∴7,24,25能构成直角三角形;选项B,∵42+52=()2,∴,4,5能构成直角三角形;选项C,∵12+()2=()2,∴,1,能构成直角三角形;选项D,∵402+502≠602,∴40,50,60不能构成直角三角形.故选D.【点睛】本题考查了勾股定理的逆定理,熟练运用勾股定理的逆定理是解决问题的关键.9、D【解析】

根据直角三角形斜边上的中线等于斜边的一半,先求出EM=FM=BC,再求△EFM的周长.【详解】解:∵BE、CF分别是△ABC的高,M为BC的中点,BC=8,

∴在Rt△BCE中,EM=BC=4,

在Rt△BCF中,FM=BC=4,

又∵EF=5,

∴△EFM的周长=EM+FM+EF=4+4+5=1.故选:D.【点睛】本题主要利用直角三角形斜边上的中线等于斜边的一半的性质.10、D【解析】

A.根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B.

∵四边形ABCD是平行四形,当AC⊥BD时,它是菱形,故B选项正确;C.根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,故C选项正确;D.有一个角是直角的平行四边形是矩形,不一定是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.11、D【解析】A选项:某种彩票的中奖机会是1%,则买100张这种彩票中奖的可能性很大,但不是一定中奖,故本选项错误;

B选项:为了解全国中学生的睡眠情况,应该采用抽样调查的方式,故本选项错误;C选项:方差反映了一组数据的波动情况,方差越小数据越稳定,故本选项错误;

D选项:一组数据3,1,4,1,1,6,10的众数和中位数都是1,故本选项正确;

故选D.12、C【解析】分析:利用勾股定理求出对角线AC的长,再根据S菱形ABCD=•BD•AC=CD•AE,求出AE即可.详解:∵四边形ABCD是菱形,∴AB=CD=5,AC⊥BD,OB=OB=4,OA=OC,在Rt△AOB中,∵AB=5,OB=4,∴OA===3,∴AC=6,∴S菱形ABCD=⋅BD⋅AC=CD⋅AE,∴AE=,故选C.点睛:本题考查了菱形的性质、勾股定理等知识,解题的关键是学会利用面积法求菱形的高,属于中考常考题型.二、填空题(每题4分,共24分)13、k<2.【解析】

由于反比例函数y=(k为常数,k≠3)的图像有一支在第二象限,故k-2<0,求出k的取值范围即可.【详解】∵反比例函数y=(k为常数,k≠3)的图像有一支在第二象限,∴k-2<0,解得k<2,故答案为k<2.【点睛】此题考查反比例函数的性质,解题关键在于掌握利用其经过的象限进行解答.14、北偏西25°方向距离为300m【解析】

根据题意作出图形,即可得到大刚家相对于小亮家的位置.【详解】如图,根据题意得∠ACD=35°,∠ABE=85°,AC=AB=300m由图可知∠CBE=∠BCD,∵AB=AC,∴∠ABC=∠ACB,即∠ABE-∠CBE=∠ACD+∠BCD,∴85°-∠CBE=35°+∠CBE,∴∠CBE=25°,∴∠ABC=∠ACB=60°,∴△ABC为等边三角形,则BC=300m,∴大刚家相对于小亮家的位置是北偏西25°方向距离为300m故填:北偏西25°方向距离为300m.【点睛】此题主要考查方位角的判断,解题的关键是根据题意作出图形进行求解.15、x⩾−2且x≠1【解析】

先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.【详解】∵代数式有意义,

∴,

解得x⩾−2且x≠1.

故答案为:x⩾−2且x≠1.【点睛】本题考查分式有意义的条件和二次根式有意义的条件,解题的关键是掌握分式有意义的条件和二次根式有意义的条件.16、2【解析】

如图,设直线y=x+b与x轴交于点C,由直线的解析式是y=x+b,可得OB=OC=b,继而得∠BCA=45°,再根据三角形外角的性质结合∠α=75°可求得∠BAC=30°,从而可得AB=2OB=2b,根据点A的坐标可得OA的长,在Rt△BAO中,根据勾股定理即可得解.【详解】设直线y=x+b与x轴交于点C,如图所示,∵直线的解析式是y=x+b,∴OB=OC=b,则∠BCA=45°;又∵∠α=75°=∠BCA+∠BAC=45°+∠BAC,∴∠BAC=30°,又∵∠BOA=90°,∴AB=2OB=2b,而点A的坐标是(,0),∴OA=,在Rt△BAO中,AB2=OB2+OA2,即(2b)2=b2+()2,∴b=2,故答案为:2.【点睛】本题考查了一次函数的性质、勾股定理的应用、三角形外角的性质等,求得∠BAC=30°是解答本题的关键.17、>【解析】

分别把点A(-1,y1),点B(-1,y1)的坐标代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.【详解】∵点A(-1,y1),点B(-1,y1)是函数y=3x的图象上的点,∴y1=-3,y1=-6,∵-3>-6,∴y1>y1.18、【解析】

根据题意可得当时,EF的值最小,利用直角三角形的勾股即可解的EF的长.【详解】根据题意可得当时,EF的值最小,AD=AB=EF=【点睛】本题主要考查最短直线问题,关键在于判断当时,EF的值最小.三、解答题(共78分)19、(1)C(-1,6);(2)24;(3)点N的坐标为(,)或(,);【解析】

(1)先求出点E的坐标,根据平移得到OA=CE=4,即可得到点C的坐标;(2)根据图象平移得到四边形的面积等于的面积,根据面积公式计算即可得到答案;(3)根据直线特点求出,tan∠NCE=tan∠POB=,再分两种情况:点N在CE的上方或下方时,分别求出直线CN的解析式得到点N的坐标即可.【详解】(1)∵点在直线上,∴m=6,∴E(3,6),由平移得CE=OA=4,∴点C的坐标是(-1,6);(2)由平移得到四边形的面积等于的面积,∴,故答案为:24;(3)由直线y=2x得到:tan∠POB=,当时,tan∠NCE=tan∠POB=,①当点N在CE上方时,直线CE的表达式为:,低昂点C的坐标代入上式并解得:b=,∴直线CN的表达式是y=x+,将上式与y=2x联立并解得:x=,y=,∴N(,);②当点N在CE下方时,直线CE的表达式为:y=-x+,同理可得:点N(,);综上,点N的坐标为(,)或(,).【点睛】此题考查函数图象上的点坐标,平行四边形的面积公式,平移的性质,求函数解析式,根据解析式求角的三角函数值,综合掌握各知识点是解题的关键.20、见解析【解析】

作斜边AB的中垂线可以求得中点D,连接CD,根据直角三角形斜边上的中线等于斜边的一半,可得CD=AD=DB.【详解】解如图所示:,△ACD和△CDB即为所求.【点睛】此题主要考查了应用设计与作图,关键在于用中垂线求得中点和运用直角三角形中,斜边上的中线等于斜边的一半,把Rt△ABC分割成两个等腰三角形.21、(1)y1=,y1=﹣x+4;(1)4;(3)当x满足1<x<3、x<2时,则y1>y1.【解析】

(1)把点A(1,3)代入y1=,求出k,得到反比例函数的解析式;再把B(3,m)代入反比例函数的解析式,求出m,得到点B的坐标,把A、B两点的坐标代入y1=ax+b,利用待定系数法求出一次函数的解析式;

(1)把x=2代入一次函数解析式,求出y1=4,得到C点的坐标,把y1=2代入一次函数解析式,求出x=4,得到D点坐标,再根据S△AOB=S△AOD-S△BOD,列式计算即可;

(3)找出一次函数落在反比例函数图象上方的部分对应的自变量的取值即可.【详解】解:(1)把点A(1,3)代入y1=,则3=,即k=3,故反比例函数的解析式为:y1=.把点B的坐标是(3,m)代入y1=,得:m==1,∴点B的坐标是(3,1).把A(1,3),B(3,1)代入y1=ax+b,得,解得,故一次函数的解析式为:y1=﹣x+4;(1)令x=2,则y1=4;令y1=2,则x=4,∴C(2,4),D(4,2),∴S△AOB=S△AOD﹣S△BOD=×4×3﹣×4×1=4;(3)由图像可知x<2、1<x<3时,一次函数落在反比例函数图象上方,故满足y1>y1条件的自变量的取值范围:1<x<3、x<2.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,三角形的面积,难度适中.利用了数形结合思想.22、(1)k=;(2)解析式为y=2x﹣2.【解析】试题分析:(1)根据L1⊥L2,则k1·k2=﹣1,可得出k的值即可;(2)根据直线互相垂直,则k1·k2=﹣1,可得出过点A直线的k等于2,得出所求的解析式即可.试题解析:解:(1)∵L1⊥L2,则k1•k2=﹣1,∴2k=﹣1,∴k=﹣;(2)∵过点A直线与y=x+2垂直,∴设过点A直线的直线解析式为y=2x+b,把A(2,2)代入得,b=﹣2,∴解析式为y=2x﹣2.23、见解析.【解析】

利用平行四边形的性质得出AD=BC,AD∥BC,进而利用已知得出DE=FC,DE∥FC,即可证得四边形CEDF是平行四边形.【详解】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=AD,F是BC边的中点,∴FC=BC=AD=DE,又∵DE∥FC,∴四边形CEDF是平行四边形.【点睛】本题主要考查了平行四边形的判定与性质,熟练应用平行四边形的判定方法是解题关键.24、(1)10,36°.补全条形图见解析;(2)5天,6天;(3)1.【解析】

(1)根据各部分所占的百分比等于1列式计算即可求出a,用360°乘以所占的百分比求出所对的圆心角的度数,求出8天的人数,补全条形统计图即可.(2)众数是在一组数据中,出现次数最多的数据.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).(3)用总人数乘以“活动时间不少于7天”的百分比,计算即可得解.【详解】(1)a=1﹣(40%+20%+25%+5%)=1﹣90%=10%.用360°乘以所占的百分比求出所对的圆心角的度数:360°×10%=36°.240÷40=600,8天的人数,600×10%=60,故答案为10,36°.补全条形图如下:(2)∵参加社会实践活动5天的最多,∴众数是5天.∵600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,∴中位数是6天.(3)∵2000×(25%+10%+5%)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论