江苏省启东市2022-2023学年高三2月11日专项练习数学试题_第1页
江苏省启东市2022-2023学年高三2月11日专项练习数学试题_第2页
江苏省启东市2022-2023学年高三2月11日专项练习数学试题_第3页
江苏省启东市2022-2023学年高三2月11日专项练习数学试题_第4页
江苏省启东市2022-2023学年高三2月11日专项练习数学试题_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省启东市2022-2023学年高三2月11日专项练习数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若为纯虚数,则z=()A. B.6i C. D.202.已知函数,若所有点,所构成的平面区域面积为,则()A. B. C.1 D.3.设a,b都是不等于1的正数,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件4.设全集,集合,,则()A. B. C. D.5.下列与的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)6.过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是()A. B. C. D.7.以,为直径的圆的方程是A. B.C. D.8.已知双曲线的左,右焦点分别为、,过的直线l交双曲线的右支于点P,以双曲线的实轴为直径的圆与直线l相切,切点为H,若,则双曲线C的离心率为()A. B. C. D.9.设递增的等比数列的前n项和为,已知,,则()A.9 B.27 C.81 D.10.已知是函数的极大值点,则的取值范围是A. B.C. D.11.已知为等比数列,,,则()A.9 B.-9 C. D.12.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为()(注:)A.1624 B.1024 C.1198 D.1560二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,且恒成立,则的值为____________.14.三棱锥中,点是斜边上一点.给出下列四个命题:①若平面,则三棱锥的四个面都是直角三角形;②若,,,平面,则三棱锥的外接球体积为;③若,,,在平面上的射影是内心,则三棱锥的体积为2;④若,,,平面,则直线与平面所成的最大角为.其中正确命题的序号是__________.(把你认为正确命题的序号都填上)15.曲线在处的切线方程是_________.16.在边长为的菱形中,点在菱形所在的平面内.若,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知公比为正数的等比数列的前项和为,且,.(1)求数列的通项公式;(2)设,求数列的前项和.18.(12分)已知抛物线上一点到焦点的距离为2,(1)求的值与抛物线的方程;(2)抛物线上第一象限内的动点在点右侧,抛物线上第四象限内的动点,满足,求直线的斜率范围.19.(12分)已知函数.(1)讨论的单调性;(2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:.20.(12分)已知函数(1)若,试讨论的单调性;(2)若,实数为方程的两不等实根,求证:.21.(12分)已知三棱锥中侧面与底面都是边长为2的等边三角形,且面面,分别为线段的中点.为线段上的点,且.(1)证明:为线段的中点;(2)求二面角的余弦值.22.(10分)已知等差数列的前n项和为,等比数列的前n项和为,且,,.(1)求数列与的通项公式;(2)求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据复数的乘法运算以及纯虚数的概念,可得结果.【详解】∵为纯虚数,∴且得,此时故选:C.【点睛】本题考查复数的概念与运算,属基础题.2、D【解析】

依题意,可得,在上单调递增,于是可得在上的值域为,继而可得,解之即可.【详解】解:,因为,,所以,在上单调递增,则在上的值域为,因为所有点所构成的平面区域面积为,所以,解得,故选:D.【点睛】本题考查利用导数研究函数的单调性,理解题意,得到是关键,考查运算能力,属于中档题.3、C【解析】

根据对数函数以及指数函数的性质求解a,b的范围,再利用充分必要条件的定义判断即可.【详解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分条件,故选C.【点睛】本题考查必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题.4、B【解析】

可解出集合,然后进行补集、交集的运算即可.【详解】,,则,因此,.故选:B.【点睛】本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题.5、C【解析】

利用终边相同的角的公式判断即得正确答案.【详解】与的终边相同的角可以写成2kπ+(k∈Z),但是角度制与弧度制不能混用,所以只有答案C正确.故答案为C【点睛】(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2)与终边相同的角=+其中.6、D【解析】

如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.7、A【解析】

设圆的标准方程,利用待定系数法一一求出,从而求出圆的方程.【详解】设圆的标准方程为,由题意得圆心为,的中点,根据中点坐标公式可得,,又,所以圆的标准方程为:,化简整理得,所以本题答案为A.【点睛】本题考查待定系数法求圆的方程,解题的关键是假设圆的标准方程,建立方程组,属于基础题.8、A【解析】

在中,由余弦定理,得到,再利用即可建立的方程.【详解】由已知,,在中,由余弦定理,得,又,,所以,,故选:A.【点睛】本题考查双曲线离心率的计算问题,处理双曲线离心率问题的关键是建立三者间的关系,本题是一道中档题.9、A【解析】

根据两个已知条件求出数列的公比和首项,即得的值.【详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A【点睛】本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.10、B【解析】

方法一:令,则,,当,时,,单调递减,∴时,,,且,∴,即在上单调递增,时,,,且,∴,即在上单调递减,∴是函数的极大值点,∴满足题意;当时,存在使得,即,又在上单调递减,∴时,,所以,这与是函数的极大值点矛盾.综上,.故选B.方法二:依据极值的定义,要使是函数的极大值点,须在的左侧附近,,即;在的右侧附近,,即.易知,时,与相切于原点,所以根据与的图象关系,可得,故选B.11、C【解析】

根据等比数列的下标和性质可求出,便可得出等比数列的公比,再根据等比数列的性质即可求出.【详解】∵,∴,又,可解得或设等比数列的公比为,则当时,,∴;当时,,∴.故选:C.【点睛】本题主要考查等比数列的性质应用,意在考查学生的数学运算能力,属于基础题.12、B【解析】

根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得.【详解】依题意:1,4,8,14,23,36,54,……两两作差得:3,4,6,9,13,18,……两两作差得:1,2,3,4,5,……设该数列为,令,设的前项和为,又令,设的前项和为.易,,进而得,所以,则,所以,所以.故选:B【点睛】本小题主要考查新定义数列的理解和运用,考查累加法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

易得,所以是等差数列,再利用等差数列的通项公式计算即可.【详解】由已知,,因,所以,所以数列是以为首项,3为公差的等差数列,故,所以.故答案为:【点睛】本题考查由递推数列求数列中的某项,考查学生等价转化的能力,是一道容易题.14、①②③【解析】

对①,由线面平行的性质可判断正确;对②,三棱锥外接球可看作正方体的外接球,结合外接球半径公式即可求解;对③,结合题意作出图形,由勾股定理和内接圆对应面积公式求出锥体的高,则可求解;对④,由动点分析可知,当点与点重合时,直线与平面所成的角最大,结合几何关系可判断错误;【详解】对于①,因为平面,所以,,,又,所以平面,所以,故四个面都是直角三角形,∴①正确;对于②,若,,,平面,∴三棱锥的外接球可以看作棱长为4的正方体的外接球,∴,,∴体积为,∴②正确;对于③,设内心是,则平面,连接,则有,又内切圆半径,所以,,故,∴三棱锥的体积为,∴③正确;对于④,∵若,平面,则直线与平面所成的角最大时,点与点重合,在中,,∴,即直线与平面所成的最大角为,∴④不正确,故答案为:①②③.【点睛】本题考查立体几何基本关系的应用,线面垂直的性质及判定、锥体体积、外接球半径求解,线面角的求解,属于中档题15、【解析】

利用导数的运算法则求出导函数,再利用导数的几何意义即可求解.【详解】求导得,所以,所以切线方程为故答案为:【点睛】本题考查了基本初等函数的导数、导数的运算法则以及导数的几何意义,属于基础题.16、【解析】

以菱形的中心为坐标原点建立平面直角坐标系,再设,根据求出的坐标,进而求得即可.【详解】解:连接设交于点以点为原点,分别以直线为轴,建立如图所示的平面直角坐标系,则:设得,解得,,或,显然得出的是定值,取则,.故答案为:.【点睛】本题主要考查了建立平面直角坐标系求解向量数量积的有关问题,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)判断公比不为1,运用等比数列的求和公式,解方程可得公比,进而得到所求通项公式;(2)求得,运用数列的错位相减法求和,以及等比数列的求和公式,计算可得所求和.【详解】解:(1)设公比为正数的等比数列的前项和为,且,,可得时,,不成立;当时,,即,解得(舍去),则;(2),前项和,,两式相减可得,化简可得.【点睛】本题考查等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,考查方程思想和运算能力,属于中档题.18、(1)1;(2)【解析】

(1)根据点到焦点的距离为2,利用抛物线的定义得,再根据点在抛物线上有,列方程组求解,(2)设,根据,再由,求得,当,即时,直线斜率不存在;当时,,令,利用导数求解,【详解】(1)因为点到焦点的距离为2,即点到准线的距离为2,得,又,解得,所以抛物线方程为(2)设,由由,则当,即时,直线斜率不存在;当时,令,所以在上分别递减则【点睛】本题主要考查抛物线定义及方程的应用,还考查了分类讨论的思想和运算求解的能力,属于中档题,19、(1)当时,在上递增,在上递减;当时,在上递增,在上递减,在上递增;当时,在上递增;当时,在上递增,在上递减,在上递增;(2)证明见解析【解析】

(1)对求导,分,,进行讨论,可得的单调性;(2)在定义域内是是增函数,由(1)可知,,设,可得,则,设,对求导,利用其单调性可证明.【详解】解:的定义域为,因为,所以,当时,令,得,令,得;当时,则,令,得,或,令,得;当时,,当时,则,令,得;综上所述,当时,在上递增,在上递减;当时,在上递增,在上递减,在上递增;当时,在上递增;当时,在上递增,在上递减,在上递增;(2)在定义域内是是增函数,由(1)可知,此时,设,又因为,则,设,则对于任意成立,所以在上是增函数,所以对于,有,即,有,因为,所以,即,又在递增,所以,即.【点睛】本题主要考查利用导数研究含参函数的单调性及导数在极值点偏移中的应用,考查学生分类讨论与转化的思想,综合性大,属于难题.20、(1)答案不唯一,具体见解析(2)证明见解析【解析】

(1)根据题意得,分与讨论即可得到函数的单调性;(2)根据题意构造函数,得,参变分离得,分析不等式,即转化为,设,再构造函数,利用导数得单调性,进而得证.【详解】(1)依题意,当时,,①当时,恒成立,此时在定义域上单调递增;②当时,若,;若,;故此时的单调递增区间为,单调递减区间为.(2)方法1:由得令,则,依题意有,即,要证,只需证(不妨设),即证,令,设,则,在单调递减,即,从而有.方法2:由得令,则,当时,时,故在上单调递增,在上单调递减,不妨设,则,要证,只需证,易知,故只需证,即证令,(),则==,(也可代入后再求导)在上单调递减,,故对于时,总有.由此得【点睛】本题考查了

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论