2022年浙江省宁波市东恩中学高三数学理上学期期末试题含解析_第1页
2022年浙江省宁波市东恩中学高三数学理上学期期末试题含解析_第2页
2022年浙江省宁波市东恩中学高三数学理上学期期末试题含解析_第3页
2022年浙江省宁波市东恩中学高三数学理上学期期末试题含解析_第4页
2022年浙江省宁波市东恩中学高三数学理上学期期末试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年浙江省宁波市东恩中学高三数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.一空间几何体的三视图如图所示,则该几何体的体积为(

)A.

B.

C.

D.参考答案:D.2.执行如图所示的程序框图,输出的S值为(

)A.3 B.-6 C.10 D.参考答案:C3.已知倾斜角为α的直线l与直线x-2y+2=0平行,则tan2α的值为()A. B.C. D.参考答案:C4.(5分)已知函数f(x)=x3+bx2+cx+d(b、c、d为常数),当x∈(0,1)时取得极大值,当x∈(1,2)时取极小值,则(b+)2+(c﹣3)2的取值范围是()A.(,5)B.(,5)C.(,25)D.(5,25)参考答案:D【考点】:利用导数研究函数的极值.【专题】:综合题;导数的概念及应用.【分析】:据极大值点左边导数为正右边导数为负,极小值点左边导数为负右边导数为正得a,b的约束条件,据线性规划求出最值.解:∵f(x)=x3+bx2+cx+d,∴f′(x)=3x2+2bx+c,∵函数f(x)在x∈(0,1)时取得极大值,当x∈(1,2)时取极小值,∴f′(x)=3x2+2bx+c=0在(0,1)和(1,2)内各有一个根,∴f′(0)>0,f′(1)<0,f′(2)>0,即,在bOc坐标系中画出其表示的区域,如图,(b+)2+(c﹣3)2表示点A(﹣,3)与可行域内的点连线的距离的平方,点A(﹣,3)到直线3+2b+c=0的距离为=,由12+4b+c=0与3+2b+c=0联立,可得交点为(﹣4.5,6),与点A(﹣,3)的距离为5,∴(b+)2+(c﹣3)2的取值范围是(5,25),故选:D.【点评】:考查学生利用导数研究函数极值的能力,以及会进行简单的线性规划的能力.5.在数列{an}中,若对任意的n均有an+an+1+an+2为定值(n∈N*),且a7=2,a9=3,a98=4,则数列{an}的前100项的和S100=()A.132 B.299 C.68 D.99参考答案:B考点:数列的求和.专题:等差数列与等比数列.分析:由题意数列各项以3为周期呈周期变化,所以a98=a2=4,a7=a1=2,a9=a3=3,进而S100=33×(a1+a2+a3)+a1.由此能够求出S100.解答:解:∵在数列{an}中,若对任意的n均有an+an+1+an+2为定值(n∈N*),∴an+3=an.即数列各项以3为周期呈周期变化∵98=3×32+2,∴a98=a2=4,a7=a1=2,a9=a3=3,a1+a2+a3=2+3+4=9,∴S100=33×(a1+a2+a3)+a100=33×(a1+a2+a3)+a1=33×9+2=299.故选B点评:本题考查数列的性质和应用,解题时要注意公式的灵活运用.6.设,则以下不等式中不恒成立的是(

) A.

B. C.

D.参考答案:C略7.已知函数()的图象与的图象的两相邻交点间的距离为,要得到的图象,只需把的图象(

)A.向左平移个单位长度

B.向右平移个单位长度C.向左平移个单位长度

D.向右平移个单位长度参考答案:A8.对于函数f(x)=asinx+bx+c(其中a,bR,cZ),选取a,b,c的一组值计算f(1)和f(-1)所得出的正确结果一定不可能是(A).4和6

(B).1和2

(C).2和4

(D).3和1参考答案:B9.对于数列{an},记Sn=a1+a2+a3+…+an,Πn=a1a2a3…an.在正项等比数列{an}中,a5=,a6+a7=,则满足Sn>Πn的最大正整数n的值为()A.12 B.13 C.14 D.15参考答案:B【考点】等比数列的前n项和;等比数列的通项公式.【分析】设正项等比数列{an}首项为a1,公比为q,由题意可得关于这两个量的方程组,解之可得数列的通项公式和a1+a2+…+an及a1a2…an的表达式,化简可得关于n的不等式,解之可得n的范围,取上限的整数部分即可得答案.【解答】解:根据题意,等比数列{an}中,首项为a1,公比为q,又由a5=,a6+a7=,则有a1q4=,a1q5+a1q6=,解可得a1==2n﹣7,q=2,则Sn=a1+a2+a3+…+an==,Πn=a1a2a3…an.=2﹣6?2﹣5?2﹣4?…?2n﹣7=,若Sn>Πn,即>,化简可得:2n﹣1>,只需满足n>+6,解可得<n<,由于n为正整数,因此n最大值为13;故选:B.10.命题:“若,则”的逆否命题是

A.若

B.若,则

C.若,则

D.若,则参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.各项均为正数的等比数列{an}中,若,则的最小值为

.参考答案:12.已知a=(x,1),=(1,2),=(-1,5),若(a+2),则

.参考答案:本题考查平面向量的线性运算.由题意得a+2,而(a+2),所以,解得,即a=(-3,1),所以.【备注】,等价于.13.设,则=

参考答案:略14.如图,游客从景点A下山至C有两种路径:一种是从A沿直线步行到C,另一种是先从A乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A下山,甲沿AC匀速步行,速度为50米/分钟.在甲出发2分钟后,乙从A乘缆车到B,在B处停留1分钟后,再从B匀速步行到C.已知缆车从A到B要8分钟,AC长为1260米,若,.为使两位游客在C处互相等待的时间不超过3分钟,则乙步行的速度v(米/分钟)的取值范围是_____.参考答案:分析:由题意结合正弦定理余弦定理首先解三角形,然后结合实际问题得到关于速度的不等式,求解不等式即可求得最终结果.详解:在△ABC中解三角形:已知,,,则:,由正弦定理可得:,由余弦定理有:,解得:,若,则,不能组成三角形,舍去,据此可得:.乙从B出发时,甲已经走了50×(2+8+1)=550m,还需走710m才能到达C.设乙步行的速度为vm/min,由题意得,解得,所以为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在范围内.点睛:解三角形应用题一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.15.已知实数m是2和8的等比中项,则抛物线y=mx2的焦点坐标为参考答案:

【知识点】抛物线的简单性质.H7解析:∵实数m是2和8的等比中项,∴m2=16,m=±4,由y=mx2,得,若m=4,则,即2p=,,焦点坐标为(0,);若m=﹣4,则,即2p=,,焦点坐标为.∴抛物线y=mx2的焦点坐标为:.故答案为:.【思路点拨】由等比中项概念求得m的值,代入抛物线方程,分m=4和m=﹣4求得抛物线的焦点坐标.16.(4分)(2015?嘉兴一模)正四面体OABC,其棱长为1.若=x+y+z(0≤x,y,z≤1),且满足x+y+z≥1,则动点P的轨迹所形成的空间区域的体积为.参考答案:【考点】:空间向量的基本定理及其意义;平面向量的基本定理及其意义.【专题】:空间向量及应用.【分析】:由题意可得点P的轨迹所形成的空间区域为平行六面体除去正四面体OABC的部分,由体积公式计算即可.解:由题意可得点P的轨迹所形成的空间区域为平行六面体除去正四面体OABC的部分,由已知数据可得S△OAB=×1×1×sin60°=,C到OAB的高h==,∴体积V=2××﹣××=故答案为:【点评】:本题考查空间向量基本不等式,涉及几何体的体积公式,属基础题.17.一个正方体消去一个角所得的几何体的三视图如图所示(图中三个四边形都是边长为3的正方形),则该几何体外接球的表面积为.参考答案:27π【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】由已知中的三视图,可得:该几何体是一个正方体消去一个角,其外接球,即棱长为3的正方体的外接球,进而得到答案.【解答】解:由已知中的三视图,可得:该几何体是一个正方体消去一个角,其外接球,即棱长为3的正方体的外接球,故该几何体外接球的表面积S=3?32π=27π,故答案为:27π三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,中,两点分别是线段的中点,现将沿折成直二面角。(1)求证:;

(2)求直线与平面所成角的正切值。参考答案:解:(Ⅰ)由两点分别是线段的中点,得,为二面角平面角,。

(Ⅱ)

连结BE交CD于H,连结AH过点D作于O。,所以为与平面所成角。中,,

中,.所以直线与平面所成角的正切值为。略19.(13分)某公司有价值a万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,从而提高产品附加值,改造需要投入,假设附加值y(万元)与技术改造投入x(万元)之间的关系满足:①y与a-x和x的乘积成正比;②x=时,y=;③0≤≤t,其中t为常数,且t∈[0,1].(1)设y=f(x),求f(x)的表达式,并求y=f(x)的定义域;(2)求出附加值y的最大值,并求出此时的技术改造投入.参考答案:解:(1)设y=k(a-x)x,当x=时,y=a2,可得k=4,∴y=4(a-x)x.由0≤≤t得又x≥0所以由①得a-x>0,即0≤x<a,所以②可化为x≤2(a-x)t,∴x≤,因为t∈[0,1],所以<a,综上可得,函数f(x)的定义域为,其中t为常数,且t∈[0,1].(2)y=4(a-x)x=-4+a2.当≥时,即≤t≤1,x=时,ymax=a2;当<,即0≤t<,y=4(a-x)x在上为增函数,∴当x=时,ymax=.综上所述,当≤t≤1,投入x=时,附加值y最大,为a2万元;当0≤t<,投入x=时,附加值y最大,为万元.略20.如图是某小区2017年1月至2018年1月当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码1—13分别对应2017年1月—2018年1月)根据散点图选择和两个模型进行拟合,经过数据处理得到两个回归方程分别为和,并得到以下一些统计量的值:

残差平方和0.0005910.000164总偏差平方和0.006050(1)请利用相关指数判断哪个模型的拟合效果更好;(2)某位购房者拟于2018年6月份购买这个小区平方米的二手房(欲购房为其家庭首套房).若购房时该小区所有住房的房产证均已满2年但未满5年,请你利用(1)中拟合效果更好的模型解决以下问题:(i)估算该购房者应支付的购房金额.(购房金额=房款+税费;房屋均价精确到0.001万元/平方米)(ii)若该购房者拟用不超过100万元的资金购买该小区一套二手房,试估算其可购买的最大面积.(精确到1平方米)附注:根据有关规定,二手房交易需要缴纳若干项税费,税费是按房屋的计税价格进行征收.(计税价格=房款)征收方式见下表:契税(买方缴纳)首套面积90平方米以内(含90平方米)为1%;首套面积90平方米以上且144平方米以内(含144平方米)为1.5%;面积144平方米以上或非首套为3%增值税(卖方缴纳)房产证未满2年或满2年且面积在144平方米以上(不含144平方米)为5.6%;其他情况免征个人所得税(卖方缴纳)首套面积144平方米以内(含144平方米)为1%;面积144平方米以上或非首套均为1.5%;房产证满5年且是家庭唯一住房的免征参考数据:,,,,,,,.参考公式:相关指数.参考答案:(1)【考查意图】本小题以购房问题为背景,以散点图、相关指数为载体,考查回归分析等基础知识,考查数据处理能力、推理论证能力、运算求解能力和应用意识,考查统计与概率思想等.【解法综述】只要理解相关指数的意义便可通过简单估算解决问题.【错因分析】考生可能存在的错误有:不懂相关指数的意义导致判断错误.【难度属性】易.(2)(i)【考查意图】本小题以估算购房金额为载体,考查回归分析、函数等基础知识,考查抽象概括能力、运算求解能力、应用意识,考查统计与概率思想、分类与整合思想、函数与方程思想等.考查学生在复杂的问题情境中获取有用信息分析问题和解决问题的能力.【解法综述】通过散点图确定2018年6月对应的的取值,代入(1)中拟合效果更好的模型,并利用参考数据即可求出二手房均价的预测值,通过阅读税收征收方式对应的图表信息,选择有用的信息,进行合理分类建立正确的函数模型,便能顺利求解.思路:由(1)的结论知,模型的拟合效果更好,通过散点图确定2018年6月对应的的取值为18,代入并利用参考数据即可求出二手房均价的预测值,通过阅读税收征收方式对应的图表信息,选择有用的信息,进行合理分类建立正确的函数模型,便能顺利求解.【错因分析】考生可能存在的错误有:不能根据散点图得到2018年6月对应的的取值为18,导致2018年6月当月在售二手房均价预测错误;不能从大量复杂的文字和图表中获取有用信息,混淆买方缴纳契税与卖方缴纳的相关税费;不能合理分类导致错误.【难度属性】中.(2)(ii)【考查意图】本小题以估算可购房屋最大面积问题为载体,考查函数与不等式等基础知识,考查运算求解能力及应用意识,考查函数与方程思想等.【解法综述】首先直观估算100万可购买的最大面积的大致范围,再利用(2)(i)中相应的结论求解.思路:首先通过估算得到,90平方米的购房金额小于100万而100平方米的房款大于100万,从而判断100万可购买的面积在90至100平方米之间,便可利用(2)(i)中相应的结论求解.【错因分析】考生可能存在的错误有:不会估算出100万可购买房屋的最大面积在90至100平方米之间,导致无从下手;未先估算100万可购买房屋的最大面积所在的范围,根据(2)(i)中的函数解析式逐一计算,使得解题过程繁杂导致计算出错.【难度属性】中.21.(16分)设m个不全相等的正数a1,a2,…,am(m≥3)依次围成一个圆圈.(1)设m=2015,且a1,a2,a3,…,a1008是公差为d的等差数列,而a1,a2015,a2014,…,a1009是公比为q=d的等比数列;数列a1,a2,…,am的前n项和Sn(n≤m)满足S3=15,S2015=S2013+12a1,求数列{an}的通项公式;(2)设a1=a,a2=b(a≠b),若数列a1,a2,…,am每项是其左右相邻两数平方的等比中项,求a8;(3)在(2)的条件下,m≤2015,求符合条件的m的个数.参考答案:考点:等比数列的性质.专题:综合题;等差数列与等比数列.分析:(1)利用a1,a2015,a2014,…,a1009是公比为d的等比数列,求出d,S3=3a1+3d=15,解得a1=2,可得数列{an}的通项公式;(2)确定an=an﹣1an+1,依此类推a8=a2=b;(3)猜想:m=6k,m=12,18,…,2012,一共有335,再利用反证法进行证明即可.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论