版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省驻马店市孙召乡中学2022年高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合,则=(
)A.{2,5,8,9}
B.{0,2,5,8,9}
C.{2,5}
D.{2,5,6,8,9}参考答案:B2.在ABC中,AB=AC=2,B=30o,P为BC边中线上的任意一点,则的值为(A)-12
(B)-6
(C)6
(D)12参考答案:B3.设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是(
)A.m∥β且l1∥α B.m∥l1
且n∥l2 C.m∥β且n∥β D.m∥β且n∥l2参考答案:B【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;综合法;空间位置关系与距离.【分析】判断线与线、线与面、面与面之间的关系,可将线线、线面、面面平行(垂直)的性质互相转换,进行证明,结合充分条件和必要条件的定义进行判断.【解答】解:∵m∥l1,且n∥l2,又l1与l2是平面β内的两条相交直线,∴α∥β,而当α∥β时不一定推出m∥l1且n∥l2,可能异面.故m∥l1且n∥l2是α∥β的一个充分而不必要的条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据空间直线和平面,平面和平面平行的性质是解决本题的关键.4.已知向量满足与的夹角为,,则的最大值为(A)
(B)
(C)
(D)参考答案:【答案解析】D解析:解:设,以OA所在的直线为x轴,O为坐标原点建立平面直角坐标系的夹角为,则即表示以为圆心,1为半径的圆,表示点A,C的距离,即圆上的点与A的距离,因为圆心到B的距离为,所以的最大值为,所以D正确.【思路点拨】根据向量的数量积的两种形式的转化,我们看到方程所表达的几何意义,利用几何意义求出最大值.5.函数取得最小值时x为(
)A.1
B.
2
C.
3
D.
4参考答案:B6.若集合,,则=A.
B.
C.
D.
参考答案:D略7.已知集合,则=
(
)
A.(1,3)
B.[1,3]
C.{1,3}
D.{1,2,3}参考答案:D略8.已知定义在区间上的函数的图像关于直线对称,当时,,如果关于的方程有解,记所有解的和为S,则S不可能为
A
B
C
D
参考答案:B略9.(09年聊城一模理)给出下列四个命题,其中正确的一个是(
)
A.在线性回归模型中,相关指数,说明预报变量对解释变量的贡献率是
B.在独立性检验时,两个变量的列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大
C.相关指数R2用来刻画回归效果,R2越小,则残差平方和越大,模型的拟合效果越差
D.随机误差e是衡量预报精确度的一个量,它满足E(e)=0参考答案:答案:D10.双曲线的一个焦点是,则的值是(***)
A.
B.
C.-1
D.1参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.当0<x<1时,的大小关系是_____________;参考答案:
12.设a>0,b>0,m>0,n>0.(Ⅰ)证明:(m2+n4)(m4+n2)≥4m3n3;(Ⅱ)a2+b2=5,ma+nb=5,求证:m2+n2≥5.参考答案:证明:(Ⅰ)因为,则,,所以,当且仅当时,取等号.
…………(Ⅱ)由柯西不等式知:,
即,所以,
当且仅当时取等号.
…………(10分)
略13.已知,则=
参考答案:14.某比赛现场放着甲、乙、丙三个空盒,主持人从一副不含大小王的52张扑克牌中,每次任取两张牌,将一张放入甲盒,若这张牌是红色的(红桃或方片),就将另一张放入乙盒;若这张牌是黑色的(黑桃或梅花),就将另一张放入丙盒;重复上述过程,直到所有扑克牌都放入三个盒子内,给出下列结论:①乙盒中黑牌不多于丙盒中黑牌②乙盒中红牌与丙盒中黑牌一样多③乙盒中红牌不多于丙盒中红牌④乙盒中黑牌与丙盒中红牌一样多其中正确结论的序号为.参考答案:②【考点】进行简单的合情推理.【分析】取双红乙盒中得红牌,取双黑丙盒中得黑牌,取一红一黑时乙盒中得不到红牌丙盒中得不到黑牌,即可得出结论.【解答】解:由题意,取双红乙盒中得红牌,取双黑丙盒中得黑牌,取一红一黑时乙盒中得不到红牌丙盒中得不到黑牌,故答案为②.【点评】本题考查进行简单的合情推理,考查学生分析解决问题的能力,比较基础.15.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数是
.参考答案:50考点:频率分布直方图.专题:概率与统计.分析:由已知中的频率分布直方图,我们可以求出成绩低于60分的频率,结合已知中的低于60分的人数是15人,结合频数=频率×总体容量,即可得到总体容量.解答: 解:∵成绩低于60分有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20则成绩低于60分的频率P=(0.005+0.010)×20=0.3,又∵低于60分的人数是15人,则该班的学生人数是=50.故答案为:50点评:本题考查的知识点是频率分布直方图,结合已知中的频率分布直方图,结合频率=矩形的高×组距,求出满足条件的事件发生的频率是解答本题的关键.16.某学校共有师生2400人,现用分层抽样的方法,从师生中抽取一个容量为160的样本,已知从学生中抽取人数为150人,那么该校的教师人数是
。参考答案:150
17.(5分)已知矩形ABCD的边AB=a,BC=3,PA⊥平面ABCD,若BC边上有且只有一点M,使PM⊥DM,则a的值为.参考答案:1.5【考点】:直线与平面垂直的判定.【分析】:连结AM,根据条件,要使PM⊥MD,则DM⊥面PAM,即DM⊥AM即可.然后利用圆的性质,只要保证以AB为直径的圆和BC相切即可.解:∵PA⊥平面ABCD,∴PA⊥DM,若BC边上存在点M,使PM⊥MD,则DM⊥面PAM,即DM⊥AM,∴以AD为直径的圆和BC相交即可.∵AD=BC=3,∴圆的半径为3,要使线段BC和半径为3的圆相切,则AB=1.5,即a=1.5,∴a的值是1.5.故答案为:1.5.【点评】:本题主要考查线面垂直的性质的应用,将线面垂直转化为直线垂直进而利用圆的性质是解决本题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知函数在x=2处取得极值为c-16.(1)求a,b的值;(2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.参考答案:解(1)因f(x)=ax3+bx+c,故f′(x)=3ax2+b,由于f(x)在点x=2处取得极值c-16,故有即化简得解得
…………..6分(2)由(1)知f(x)=x3-12x+c,f′(x)=3x2-12.令f′(x)=0,得x=-2或2,当x∈(-∞,-2)时,f′(x)>0,故f(x)在(-∞,-2)上为增函数;当x∈(-2,2)时,f′(x)<0,故f(x)在(-2,2)上为减函数;当x∈(2,+∞)时,f′(x)>0,故f(x)在(2,+∞)上为增函数.由此可知f(x)在x=-2处取得极大值f(-2)=16+c,f(x)在x=2处取得极小值f(2)=c-16.由题设条件知,16+c=28,解得c=12,此时f(-3)=9+c=21,f(3)=-9+c=3,f(2)=c-16=-4,因此f(x)在[-3,3]上的最小值为f(2)=-4.
.…………..12分19.(本小题满分14分)设函数f(θ)=sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(1)若点P的坐标为,求f(θ)的值;(2)若点P(x,y)为平面区域,上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.参考答案:20.已知椭圆过点,且长轴长等于4.(I)求椭圆C的方程;(II)是椭圆C的两个焦点,O是以为直径的圆,直线O相切,并与椭圆C交于不同的两点A,B,若,求k的值.
参考答案:(I)(II)解析:解:(Ⅰ)由题意,椭圆的长轴长,得,…………2分∵点在椭圆上,∴得,…………4分∴椭圆的方程为.………………6分(II)由直线L与圆O相切,得,即,设由消去y,整理得,由题意可知圆O在椭圆内,所以直线必与椭圆相交…………10分∴………………11分∵,∴.………………12分∵,∴,,得k的值为.…………13分
略21.从一批柚子中,随机抽取100个,获得其重量(单位:克)数据按照区间,,,进行分组,得到频率分布直方图,如图4.(1)根据频率分布直方图计算抽取的100个柚子的重量众数的估计值.(2)用分层抽样的方法从重量在和的柚子中共抽取5个,其中重量在的有几个?(3)在(2)中抽出的5个柚子中,任取2个,求重量在的柚子最多有1个的概率.参考答案:(1)众数的估计值为最高的矩形的中点,即众数的估计值等于(克)(2分)(2)从图中可知,重量在的柚子数(个)重量在的柚子数(个)(4分)从符合条件的柚子中抽取5个,其中重量在的个数为(个)
(6分)(3)由(2)知,重量在的柚子个数为3个,设为,重量在的柚子个数为2个,设为,则所有基本事件有:,共10种
(9分)其中重量在的柚子最多有1个的事件有:,共7种
(11分)所以,重量在的柚子最多有1个的概率.
(12分)略22.(本小题满分12分)已知,(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)若在处有极值,求的单调递增区间;(Ⅲ)是否存在实数,使在区间的最小值是3,若存在,求出的值;若不存在,说明理由.参考答案:(Ⅰ)函数的定义域为,因为,所以当时,,,所以,所以曲线在点处的切线方程为,即.
3分(Ⅱ)因为在处有极值,所以,由(Ⅰ)知,所以经检验,时在处有极值.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 的面粉销售合同范本
- 全新公司员工劳动合同书模板
- 软件产品采购合同范本
- 重庆个人房屋买卖合同标准范文
- 2024年大数据分析与应用项目合同
- 物业管理的关键问题
- 范文药师租赁合同
- 劳务班组承包合同
- 医疗器械基础知识培训篇
- 超低水头轴流式液力透平能量特性的数值与试验研究
- DL-T5816-2020分布式电化学储能系统接入配电网设计规范
- 2024年4月自考00832英语词汇学试题
- 竞赛试卷(试题)-2023-2024学年六年级下册数学人教版
- 《电力用直流电源系统蓄电池组远程充放电技术规范》
- 2024年中考语文 (湖北专用)专题一 字音、字形课件
- T-ACEF 095-2023 挥发性有机物泄漏检测红外成像仪(OGI)技术要求及监测规范
- 骨科手术的术后饮食和营养指导
- 旅游定制师入行培训方案
- 2024年中国南方航空股份有限公司招聘笔试参考题库含答案解析
- 六年级上册数学应用题100题
- 个人代卖协议
评论
0/150
提交评论