版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年度鲁教版(五四学制)七年级数学下册期末阶段测试题一.选择题(共12小题,满分36分)1.下列属于必然事件的是()A.水滴石穿 B.水中捞月 C.守株待兔 D.大海捞针2.若a>b,则下列不等式一定成立的是()A.a>b+2 B.2﹣a<1﹣b C.a+1>b+1 D.|a|>|b|3.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.BE=CD C.BD=CE D.AD=AE4.已知方程组,那么x与y的关系是()A.4x+2y=5 B.2x﹣2y=5 C.x+y=1 D.5x+7y=55.在一个不透明的袋子中装有黑球m个、白球n个、红球5个,除颜色外无其它差别,任意摸出一个球是红球的概率是()A. B. C. D.6.不等式组的解集在数轴上表示正确的是()A. B. C. D.7.把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB=34°,则∠FGC为()A.34° B.48° C.56° D.68°8.若数a使关于x的不等式组有且只有四个整数解,则a的取值范围是()A.a=﹣2或a≥2 B.﹣2<a<2 C.﹣2≤a≤2 D.﹣2<a≤29.如图,在Rt△ABC中,∠A=90°,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=2,则BC的长为()A.12 B.16 C.20 D.810.如图,AB∥CD,∠ABE=40°,若CF平分∠ECD,且满足CF∥BE,则∠ECD的度数为()A.70° B.74° C.78° D.80°11.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,连接EF交AD于G.下列结论:①AE=AF;②AD垂直平分EF;③EF垂直平分AD;④AD平分∠EDF.其中正确的结论的个数为()A.1 B.2 C.3 D.412.如图,直线y=ax+4a(a≠0)与y=﹣x+b的交点的横坐标为﹣2,则关于x的不等式﹣x+b>ax+4a>0的整数解为()A.﹣1 B.﹣3 C.﹣4 D.﹣5二.填空题(共9小题,满分27分)13.“x的3倍与1的差不大于4”用不等式表示为.14.已知二元一次方程3x﹣y=5,用含x的代数式表示y,则y=.15.若实数x,y满足方程组,则(2x+y)2022=.16.已知关于x,y的方程组的解满足x+y=5,则k的值为.17.七年级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车.则七年级共有名学生.18.一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时,该轮船在静水中的速度为千米/小时.19.如图,小红观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=93°,∠DCE=116°,则∠E的度数是°.20.如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF折叠图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数是.21.如图,若∠E=26°,则∠A+∠B+∠C+∠D=°.三.解答题(共7小题,满分57分)22.解下列方程:(1).(2).23.(1)解不等式组并将解集在数轴上表示出来.(2)已知关于x,y的方程组的解满足x+y≥5,求m的取值范围.24.如图,在平面直角坐标系中,直线l1:y=﹣x﹣1与直线l2:y=﹣2x+2相交于点P,并分别与x轴相交于点A,B.(1)点P的坐标为.(2)求△PAB的面积.(3)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.25.又是一年瑞阳至,绿杨带雨垂垂重,五色新丝缠角粽.今年端午节前,某校开展“学党史、感党恩、悟思想”活动,购买了一批粽子送给镇上养老院老人品尝.结算时发现:购买4盒A种品牌粽子的费用与购买3盒B种品牌的粽子的费用相同;此次购买A种品牌的粽子30盒,B种品牌的粽子20盒共花费3400元.(1)求A、B两种品牌粽子的单价各多少元?(2)根据活动需要,该校决定再次购买A、B两种品牌的粽子50盒,正逢某超市“优惠促销”活动,A种品牌的粽子每盒单价优惠4元,B种品牌的粽子每盒单价打8折.如果此次购买A、B两种品牌粽子50盒的总费用不超过3000元,且购买B种品牌的粽子不少于23盒,则有几种购买方案?26.一个不透明袋子中装有红、黄、绿三种颜色的球共60个,它们除颜色外都相同.已知其中黄球个数是绿球个数的4倍,从袋中摸出一个球是红球的概率为.(1)分别求红球和绿球的个数.(2)求从袋中随机摸出一球是绿球的概率.(3)从袋中拿出12个黄球,将剩余的球搅拌均匀,求从袋中剩余的球中随机摸出一个球是黄球的概率.27.已知,在△ABC中,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,且AD=CE.(1)求证:∠ACB=90°;(2)点O为AB的中点,连接OD,OE.请判断△ODE的形状?并说明理由.28.(1)发现如图1,△ABC和△ADE均为等边三角形,点D在BC边上,连接CE.填空:①∠DCE的度数是;②线段CA、CE、CD之间的数量关系是.(2)探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在BC边上,连接CE.请判断∠DCE的度数及线段CA、CE、CD之间的数量关系,并说明理由.(3)应用如图3,在Rt△ABC中,∠A=90°,AC=4,AB=6.若点D满足DB=DC,且∠BDC=90°,请直接写出DA的长.
参考答案一.选择题(共12小题,满分36分)1.解:A.水滴石穿,是必然事件,因此选项符合题意;B.水中捞月,是不可能事件,因此选项不符合题意;C.守株待兔,是随机事件,因此选项不符合题意;D.大海捞针,是随机事件,因此选项不符合题意;故选:A.2.解:A、由a>b,不等式的两边同时加上2,可得a+2>b+2,∴a>b+2不一定成立,故此选项不符合题意;B、由a>b,不等式的两边同时乘以﹣1,可得﹣a<﹣b,不等式的两边同时加上2,可得2﹣a<2﹣b,∴2﹣a<1﹣b不一定成立,故此选项不符合题意;C、由a>b,不等式的两边同时加上1,可得a+1>b+1,故此选项符合题意;D、由a>b,当a=﹣1,b=﹣2时,|a|=1,|b|=2,此时|a|<|b|,故此选项不符合题意;故选:C.3.解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添AD=AE,利用SAS即可证明△ABE≌△ACD.故选:B.4.解:,①+②×2得:5x+5y=5,整理得:x+y=1.故选:C.5.解:∵袋子中共有(m+n+5)个球,任意摸出一个球是红球的有5种结果,∴任意摸出一个球是红球的概率是,故选:A.6.解:,解不等式①,得:x≤2,解不等式②,得:x<4,∴不等式组的解集为x≤2,故选:B.7.解:如图所示:∵EF是折痕,∴∠C'EC=∠1+∠2,且∠C'EC=2∠1,∵AC'∥BD',∴∠3=∠C'EC,∠1=∠EFB,又∵∠EFB=34°,∴∠1=34°,∴∠3=68°,又∵∠FGC=∠3,∴∠FGC=68°.故选:D.8.解:解不等式,得:x<5,解不等式5x﹣2≥x+a,得:x≥,∵关于x的不等式组有且只有四个整数解,∴0<≤1,∴﹣2<a≤2,故选:D.9.解:∵CM平分∠ACB交AB于点M,∴∠NCM=∠BCM,∵MN∥BC∴∠NCM=∠BCM=∠NMC,∵MN平分∠AMC,∴∠AMN=∠NMC=∠B,∴∠ACB=2∠B,NM=NC,∴∠B=30°;∵AN=2,∠AMN=∠B=30°,∴MN=2AN=4,∴NM=NC=4,∴AC=AN+NC=6,∴BC=2AC=12,故选:A.10.解:如图,过E作EM∥AB.∵EM∥AB,∴∠B=∠BEM=40°.又∵AB∥CD,∴EM∥CD.∴∠MEC+∠ECD=180°.∴∠MEC=180°﹣∠ECD.∵CF平分∠ECD,∴∠ECF=.∵BE∥CF,∴∠BEC+∠ECF=180°.∴∠BEM+∠MEC+∠ECF=180°.∴40°+180°﹣∠ECD+=180°.∴∠ECD=80°.故选:D.11.解:∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∠ADE=∠ADF,∴AD平分∠EDF;④正确;∵AD平分∠BAC,∵AE=AF,DE=DF,①正确;∴AD垂直平分EF,②正确;③错误,正确的有3个,故选:C.12.解:∵直线y=ax+4a(a≠0)与y=﹣x+b的交点的横坐标为﹣2,∴关于x的不等式﹣x+b>ax+4a的解集为x<﹣2,∵y=ax+4a=0时,x=﹣4,∴ax+4a>0的解集是x>﹣4,∴﹣x+b>ax+4a>0的解集是﹣4<x<﹣2,∴关于x的不等式﹣x+b>ax+4a>0的整数解为﹣3.故选:B.二.填空题(共9小题,满分27分)13.解:由题意可得,3x﹣1≤4,故答案为:3x﹣1≤4.14.解:3x﹣y=5,移项,得y=3x﹣5,故答案为:3x﹣5.15.解:,①+②得,x=﹣1,将x=﹣1代入①得,y=3,∴2x+y=1,∴(2x+y)2022=1,故答案为:1.16.解:,②×2﹣①,得3x=9k+9,解得x=3k+3,把x=3k+3代入①,得3k+3+2y=k﹣1,解得y=﹣k﹣2,∵x+y=5,∴3k+3﹣k﹣2=5,解得k=2.故答案为:217.解:设一共有汽车x辆,由题意,得45x+15=60(x﹣1),解得:x=5,则45x+15=225+15=240.故答案为:240.18.解:设该轮船在静水中的速度为x千米/小时,依题意得:﹣x=x﹣,解得:x=12.故答案为:12.19.解:如图:延长DC交AE于F,∵AB∥CD,∠BAE=93°,∴∠CFE=93°,又∵∠DCE=116°,∴∠E=∠DCE﹣∠CFE=116°﹣93°=23°.故答案为:23.20.解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图(2)中∠GFC=180°﹣2∠EFG=140°,在图(3)中∠CFE=∠GFC﹣∠EFG=120°,故答案为:120°.21.解:如图,设AD交EB于F,交EC于G,∵∠A+∠B+∠AFB=180°,∠C+∠D+∠CGD=180°,∴∠A+∠B+∠AFB+∠C+∠D+∠CGD=360°,即∠A+∠B+∠C+∠D=360°﹣∠AFB﹣∠CGD,∵∠AFB=∠EFG,∠CGD=∠EGF,∴∠A+∠B+∠C+∠D=360°﹣∠EFG﹣∠EGF=360°﹣(∠EFG+∠EGF),∵∠E+∠EFG+∠EGF=180°,∠E=26°,∴∠EFG+∠EGF=180°﹣26°=154°,∴∠A+∠B+∠C+∠D=360°﹣154°=206°.故答案为206°.三.解答题(共7小题,满分57分)22.解:(1),①×5+②得:17x=51,解得:x=3,把x=3代入①得:y=4,则方程组的解为;(2)方程组整理得:,①+②×5得:21x=﹣21,解得:x=﹣1,把x=﹣1代入②得:y=﹣2,则方程组的解为.23.解:(1)解不等式5x﹣3>2x,得:x>1,解不等式<,得:x<2,则不等式组的解集为1<x<2,将不等式组的解集表示在数轴上如下:(2)方程相减可得x+y=4﹣m,∵x+y≥5,∴4﹣m≥5,解得m≤﹣1.24.解:(1)由解得,∴P(2,﹣2),故答案为(2,﹣2);(2)直线y=﹣x﹣1与直线y=﹣2x+2中,令y=0,则﹣x﹣1=0与﹣2x+2=0,解得x=﹣2与x=1,∴A(﹣2,0),B(1,0),∴AB=3,∴S△PAB===3;(3)设M(a,﹣a﹣1),由MN∥y轴,得N(a,﹣2a+2),MN=|﹣a﹣1﹣(﹣2a+2)|=AB=3,解得a=4或a=0,∴M(4,﹣3)或(0,﹣1).25.解:(1)设A种品牌粽子的单价是x元,B种品牌粽子的单价是y元,由题意得:,解得:,答:A种品牌粽子的单价是60元,B种品牌粽子的单价是80元;(2)设此次购买A品牌粽子n个,则购买B品牌粽子(50﹣n)个,由题意得:,解得:23≤n≤25,∵n是正整数,∴n可取23或24或25,则50﹣n=27或26或25,答:共有三种购买方案:方案一、A种品牌的粽子23盒,B种品牌的粽子27盒;方案二、A种品牌的粽子24盒,B种品牌的粽子26盒;方案三、A种品牌的粽子25盒,B种品牌的粽子25盒.26.解:(1)红球个数:60×=20(个),设绿球有x个,则黄球有4x个,根据题意,得x+4x+20=60,解得x=8,所以红球有20个,绿球有8个,(2)从袋中随机摸出一球,共有60种等可能的结果,其中摸出绿球的结果有8种,所以从袋中随机摸出一球是绿球的概率为=;(3)由(1)得4x=32,拿出12个黄球以后,从袋中随机摸出一球,共有48种等可能的结果,其中摸出黄球的结果有20种,所以从袋中剩余的球中随机摸出一个球是黄球的概率=.27.(1)证明:∵AD⊥CE,BE⊥CE,∴∠D=∠E=90°,在Rt△ACD和Rt△CBE中,,∴Rt△ACD≌Rt△CBE(HL),∴∠DCA=∠EBC,∵∠E=90°,∴∠EBC+∠ECB=90°,∴∠DCA+∠ECB=90°,∴∠ACB=180°﹣90°=90°;(2)解:△ODE等腰直角三角形,理由如下:如图2,连接OC,∵AC=BC,∠ACB=90°,点O是AB中点,∴AO=BO=CO,∠CAB=∠CBA=45°,CO⊥AB,∴∠AOC=∠BOC=∠ADC=∠BEC=90°,∵∠BOC+∠BEC+∠ECO+∠EBO=360°,∴∠EBO+∠ECO=180°,且∠DCO+∠ECO=180°,∴∠DCO=∠EBO,由(1)知,Rt△ACD≌Rt△CBE,∴DC=BE,在△DCO和△EBO中,,∴△DCO≌△EBO(SAS),∴EO=DO,∠EOB=∠DOC,∵∠COE+∠EOB=90°,∴∠DOC+∠COE=90°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024工厂一线员工派遣协议样式版
- 2024年工业厂房水电安装工程分包合同样本版
- 2024年某影视制作公司与网络视频平台之间的影视作品播放合同
- 2024年定制版房产买卖中介协议书版A版
- 2024年房产过户手续全流程代理服务协议
- 2024年标准二手车购销合同版
- 2024年夫妻无子女无财产分割离婚合同案例版B版
- 2024年有担保借款合同模板3篇
- 2024年个人信用借款协议范本一
- 2024年事业单位劳动协议鉴证流程与要点一
- 人音版音乐七年级上册《辽阔的草原》课件
- 学校大门及围墙工程施工组织设计
- 军队文职考试《公共科目》试题及解答参考(2025年)
- GB/T 44731-2024科技成果评估规范
- 2023-2024学年广东省广州市越秀区九年级(上)期末语文试卷
- 2023年上海交响乐团招聘工作人员考试真题
- 2024年统编版新教材语文小学一年级上册全册单元测试题及答案(共8单元)
- 探寻中国茶:一片树叶的传奇之旅学习通超星期末考试答案章节答案2024年
- 2024年新苏教版四年级上册科学全册知识点(复习资料)
- (正式版)JTT 1499-2024 公路水运工程临时用电技术规程
- 认可标识使用和认可状态声明管理程序
评论
0/150
提交评论