![结构力学悬索结构_第1页](http://file4.renrendoc.com/view/1fab9f6ac0dc839f1120c0803873f055/1fab9f6ac0dc839f1120c0803873f0551.gif)
![结构力学悬索结构_第2页](http://file4.renrendoc.com/view/1fab9f6ac0dc839f1120c0803873f055/1fab9f6ac0dc839f1120c0803873f0552.gif)
![结构力学悬索结构_第3页](http://file4.renrendoc.com/view/1fab9f6ac0dc839f1120c0803873f055/1fab9f6ac0dc839f1120c0803873f0553.gif)
![结构力学悬索结构_第4页](http://file4.renrendoc.com/view/1fab9f6ac0dc839f1120c0803873f055/1fab9f6ac0dc839f1120c0803873f0554.gif)
![结构力学悬索结构_第5页](http://file4.renrendoc.com/view/1fab9f6ac0dc839f1120c0803873f055/1fab9f6ac0dc839f1120c0803873f0555.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十五章悬索计算§15-1概述§15-2集中荷载作用下的单根悬索计算§15-3分布荷载作用下的单根悬索计算§15-4悬索的变形协调方程及初态终态问题求解§15-5悬索体系的计算§15-1概述悬索:悬索结构中的主要承重构件,一般由高强度钢材制成。悬索受力特性:只产生轴向拉力。悬索的优点:受力合理,能充分利用高强度钢材的优点;
结构自重轻;
较经济地跨越很大的跨度。悬索的特征:柔性结构,几何形状随所受荷载不同而变化;位移与外荷载的关系是非线性的;
按变形后的几何形状和尺寸建立平衡方程。悬索AB在竖向集中荷载作用的计算简图如图a所示。§15-2集中荷载作用下的单根悬索计算图b为相应简支梁。将索端张力沿竖向和弦AB方向分解可得:可求得索端张力的水平与竖向分量为:(a)§15-2集中荷载作用下的单根悬索计算即给定了悬索中任一点K到弦AB的竖直距离fK,索中张力的水平分量可由下式确定(b)为相应简支梁K界面的弯矩。FH在各索段中为常数,各索段的张力可由各集中力作用点的平衡方程求得,并可确定各索段的几何位置。例15-1求图a所示悬索在集中荷载作用下各索端张力及几何位置。§15-2集中荷载作用下的单根悬索计算解:由图a可得悬索E点到弦
AB的竖直距离为作相应简支梁图b。计算得由式(b)得由式(a)得§15-2集中荷载作用下的单根悬索计算由端点(A或B)开始,依次考虑各结点处的平衡条件,可求出以分量表示的各索段张力及几何位置,如图c。§15-3分布荷载作用下的单根悬索计算1.平衡微分方程
悬索在分布荷载作用下的几何形状是曲线,如图a所示。—索曲线索两端及索中任一点张力的水平分量FH为常量。取任一微段索dx为隔离体,其受力如图b。由∑Fy=0可得
(c)单根悬索基本平衡微分方程
§15-3分布荷载作用下的单根悬索计算2.常见分布荷载作用下平衡微分方程的解(1)沿跨度方向均布荷载q作用,如图。由式(c)可得
积分两次并由边界条件可得
给定悬索跨中垂度f为控制值
(d)令由式(d)可得
代入式(d)可得
—二次抛物线方程§15-3分布荷载作用下的单根悬索计算弦AB的直线方程
以弦AB为基线的悬索曲线方程
当AB为水平线时,c=0,有当索曲线方程确定后,索中各点的张力为
当索较平坦时,如f/l≤0.1,可近似为
§15-3分布荷载作用下的单根悬索计算(2)沿索长度均布荷载q作用,如图。将q转化为沿跨度方向的等效均布荷载qy,由图得代入式(c)得
积分并根据边界条件可得
(e)式中§15-3分布荷载作用下的单根悬索计算当AB位于水平方向时,c=0有可得
(f)若给定跨中垂度f,则有
—可算出FH。式(e)与式(f)表示的曲线为悬链线。曲线比较平坦时,可以用较简单的抛物线代替悬链线;把沿索长度的均布荷载折算成沿跨度的均布荷载进行计算。
§15-3分布荷载作用下的单根悬索计算3.任意分布荷载作用下平衡微分方程的解—梁比拟法
悬索微分方程式(c)与梁的平衡微分方程形式完全相同
—梁的平衡微分方程若两者有相同的边界条件,可建立关系式
可得
对于两端支座位于同一水平线的悬索,其两端边界条件与相应简支梁弯矩图相同。
(g)§15-3分布荷载作用下的单根悬索计算如图a、b悬索ABx=0时,y=0x=l时,y=0相应简支梁ABx=0时,M=0x=l时,M=0§15-3分布荷载作用下的单根悬索计算图a为两端支座高差为c的悬索,在相应简支梁的一端加上集中力偶矩FHc,y与M得到相同的边界条件,即悬索ABx=0时,y=0x=l时,y=c相应简支梁ABx=0时,M=0x=l时,M=FHc§15-3分布荷载作用下的单根悬索计算任意分布荷载作用下悬索曲线的形状与相应简支梁弯矩图的形状完全相同。两端等高的悬索曲线:由式(g)直接计算。两端支座高差为c的悬索曲线:计算式为(h)式(h)的第二项为悬索支座连线AB的竖标,第一项为以弦AB为基线的悬索曲线竖标y1(x),即由式(g)、(h)可得如果用两支座连线作为悬索线竖向坐标的基线,无论两支座等高与否,悬索曲线的形状与相应简支梁弯矩图的形状相似,任意点竖标之比为常数FH。§15-3分布荷载作用下的单根悬索计算4.悬索长度的计算
如图,由悬索AB中取一微分单元ds,有积分可得悬索AB的长度为将按级数展开,取两项时取三项时
(i)(j)§15-3分布荷载作用下的单根悬索计算例15-2试求图式形状为抛物线的悬索长度。解:设抛物线悬索方程为代入式(i)积分得悬索长度为代入式(h)积分得悬索长度为当两支座等高时垂度变化值大于悬索长度变化值§15-4悬索的变形协调方程及初态终态问题求解1.悬索的变形协调方程悬索实际问题的一般模式:已知初始状态:荷载q0,位置y0,内力FH0;求解最终状态:荷载增量Δq,悬索位置y,内力FH。悬索的平衡方程中有两个未知量:y,FH要补充一个方程:变形协调方程—内力与位移的关系§15-4悬索的变形协调方程及初态终态问题求解图示悬索的初始位置为AB,最终位置为A’B’。由几何关系得§15-4悬索的变形协调方程及初态终态问题求解略去微小量略去微小量将上式根号按级数展开取两项可得整根悬索总伸长量§1应5-佩4悬索圆的变端形协瞎调方坊程及清初态副终态欠问题纳求解uR-右端点发支座B水平雄位移uL-左端点浴支座A水平亩位移将y=y0+v代入上考式得悬索伸射长是由污悬索内纷力增量矩和温度或变化引肆起的,苏即略去微小量§1俗5-急4悬索的径变形协驴调方程殖及初态仙终态问醒题求解整理猾得(k)(m)或变形协调方程2.单根饼悬索供初态茄终态智问题侵的求浪解已知悬要索初始轨状态:育荷载q0,曲贴线形天状函祸数y0,初促始内右力FH0M0(x)—q0作用下醋相应简规支梁的挂弯矩,c0—悬索灶两端已支座央高差巡寿。§15特-4悬索心的变我形协泊调方预程及朝初态被终态授问题披求解悬索晚最终崭状态狠:荷感载变环为q0+△q,曲线蛛形状函侍数y与悬索写内力FH必须满后足变形刘协调条每件和终阳态的平拉衡条件有M(x)—q作用挤下相蒜应简些支梁扬的弯叠矩,c—终止蓄状态仰悬索挥两端冻支座料高差陵。§15饲-4悬索的件变形协膝调方程头及初态扯终态问桌题求解整理可棍得可解造出FH式中如支零座位抛移与们待定待的索公内力理有关渠时,煮需与恨支承珍结构辩的刚练度方帆程联情立求和解;乱或用法试算搂法确正定支慈座位芬移。FS0-初始闭状态习相应爱简支饿梁的以剪力FS-最终摧状态韵相应继简支预梁的荣剪力§15惧-4悬索的氏变形协劣调方程深及初态喘终态问天题求解均布荷调载作用染下,小贱垂度抛印物线悬绵索内力航的计算初始状恶态的长厚度最终状奔态的长累度长度变彩化值为变形协船调方程鉴为平衡方渐程为整理猫得迭代预法计龙算(n)§1功5-畅4悬索矩的变草形协沟调方坛程及远初态迟终态概问题齐求解例15-筛2现有承械受均布修荷载抛胳物线的虚悬索,刚已知A=6驱7.王4m别m2,E=1贞66奸.6众GP希a,l=8m,q0=0.灵4kN趟/m,FH0=20前kN,q=1汉kN塘/m汗.试求每悬索葱最终疏状态盼水平羞张力FH及跨悉中垂匙度增魔量。解:将厕已知数互据代入勿式(n)整理亦得写成迭纤代形式迭代计崖算得初始妈跨中黄垂度最终甩跨中膜垂度跨中弃垂度板增量§1姐5-甩5悬索体跑系的计详算悬索事体系锁由多膏根悬除索组音成,出用位世移法坏计算拼。基本未滋知量:扬悬索结掘点位移计算瞧单元技:践结眉点间浙的索也段1.位移请法的赴基本佛假定(1)悬索的在应力与宿应变保耀持线性粗关系(2召)悬索仅探承受结渡点集中妈荷载作位用,相邻支结点钩间的贸索段咳均为婚直线垦。§15免-5悬索体糠系的计亚算2.位移对法的苍典型爆方程图(a)表示拔空间蛇悬索已体系傻一典弓型结嘉点的嚼初始笋状态资,汇竿交于恶此结身点的酱悬索缘瑞根数肌为n。(a)(b)设j为任掠一索呼段的充远端锈结点夸如图(b掏),当认结点i发生位卫移ui、vi、wi时结点j由初始雪位置j0(xj,yj,wj)移至橡位置j(xj+uj,yj+vj,zj+wj)。§15全-5悬索衡体系达的计心算初始状淹态结点效上无外爱荷载作列用,结齿点i的平衡遵条件为初始状悄态索段ij长度为当结点闷承受荷砍载时,赏结点i的平戒衡条耍件为最终微状态索段ij长度纲为§15例-5悬索员体系殖的计残算整理后绵可得(i=1,2,3,…,N)典型扭方程§15榜-5悬索体损系的计踢算典型方妥程写成纷矩阵形忠式F—结点百荷载淋列阵冷。温斤度变开化的夏影响林计入咸这一述项;R—未知位青移的非舞线性项读,列矩治阵;K—体系的饱线性工雁作部分个的刚度增矩阵;Δ—未知结妹点位移纲分量的歇列矩阵朱。典型逃方程洋的求翻解步斗骤(1)选择适当的荷载分级数。用一正整数m除F;(2)将F/m荷载加于悬索体系。(3)应用迭代法求解。收敛标准为(4)重复(2)、(3)运算,直到全部荷载加到悬索体系上,求出全部结点位移分量。§1絮5-需5悬索体肆系的计挨算例15粥-4图(a圈)所示私平面材悬索犁横截答面积A=5弃48川mm2,E=1充54科GP集a,重47.远03N小/m,用摩位移轿法计娇
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度销售团队业绩提升劳动合同补充协议书
- 二零二五年度租赁挖机租赁合同终止及清算合同
- 二零二五年度新能源汽车停车位租赁服务合同范本
- 2025年度私人房产出售与装修质保合同
- 二零二五年度矿石国际贸易保险合同
- 2025年度班组承包资源整合项目合同
- 2025年文学艺术创作著作权许可合同
- 酒吧装修临时用工合同
- 卫星通信系统服务购买合同
- 社区O2O服务平台开发合同
- 安徽省蚌埠市2025届高三上学期第一次教学质量检查考试(1月)数学试题(蚌埠一模)(含答案)
- 2025年春节安全专题培训(附2024年10起重特大事故案例)
- 2025年江苏太仓水务集团招聘笔试参考题库含答案解析
- 辽宁省沈阳名校2025届高三第一次模拟考试英语试卷含解析
- 《中小学校园食品安全和膳食经费管理工作指引》专题知识培训
- 2024年新疆区公务员录用考试《行测》真题及答案解析
- 第三章-自然语言的处理(共152张课件)
- 行政事业单位国有资产管理办法
- 六年级口算训练每日100道
- 高一生物生物必修一全册考试题带答题纸答案
- 北师大版五年级上册四则混合运算100道及答案
评论
0/150
提交评论