版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
STUDENTSOLUTIONSMANUALJeffreyM.Wooldridge
IntroductoryEconometrics:AModernApproach,4e
CONTENTS
PrefaceivChapter1Introduction1Chapter2TheSimpleRegressionModel3
Chapter3MultipleRegressionAnalysis:Estimation9Chapter4MultipleRegression
Analysis:Inference17Chapter5MultipleRegressionAnalysis:OLSAsymptotics24
Chapter6MultipleRegressionAnalysis:FurtherIssues27Chapter7Multiple
RegressionAnalysisWithQualitative34Information:Binary(orDummyVariables
Chapter8Heteroskedasticity42Chapter9MoreonSpecificationandData
Problems47Chapter10BasicRegressionAnalysisWithTimeSeriesData52Chapter11
FurtherIssuesinUsingOLSWithTimeSeriesData58Chapter12SerialCorrelationand
Heteroskedasticityin65TimeSeriesRegressions
Chapter13PoolingCrossSectionsAcrossTime.Simple71PanelDataMethods
Chapter14AdvancedPanelDataMethods78Chapter15InstrumentalVariables
EstimationandTwoStage85LeastSquares
Chapter16SimultaneousEquationsModels92Chapter17LimitedDependent
VariableModelsandSample99SelectionCorrections
Chapter18AdvancedTimeSeriesTopics110
ii
AppendixABasicMathematicalTools117AppendixBFundamentalsof
Probability119AppendixCFundamentalsofMathematicalStatistics120AppendixD
SummaryofMatrixAlgebra122AppendixETheLinearRegressionModelinMatrix
Form123
iii
PREFACE
Thismanualcontainssolutionstotheodd-numberedproblemsandcomputer
exercisesinIntroductoryEconometrics:AModernApproach,4e.Hopefully,youwill
findthatthesolutionsaredetailedenoughtoactasastudysupplementtothetext.Rather
thanjustpresentingthefinalanswer,Iusuallyprovidedetailedsteps,emphasizingwhere
thechaptermaterialisusedinsolvingtheproblems.
Someoftheanswersgivenherearesubjective,andyouoryourinstructormayhave
perfectlyacceptablealternativeanswersoropinions.
IobtainedthesolutionstothecomputerexercisesusingStata,startingwithversion
4.0
andendingwithversion9.0.Nevertheless,almostalloftheestimationmethods
coveredinthetexthavebeenstandardized,anddifferenteconometricsorstatistical
packagesshouldgivethesameanswerstothereporteddegreeofaccuracy.Therecanbe
differenceswhenapplyingmoreadvancedtechniques,asconventionssometimesdiffer
onhowtochooseorestimateauxiliaryparameters.(Examplesincludeheteroskedasticity-
robuststandarderrors,estimatesofarandomeffectsmodel,andcorrectionsforsample
selectionbias.Anydifferencesinestimatesorteststatisticsshouldbepractically
unimportant,providedyouareusingareasonablylargesamplesize.WhileIhave
endeavoredtomakethesolutionsfreeofmistakes,someerrorsmayhavecreptin.I
wouldappreciatehearingfromstudentswhofindmistakes.Iwillkeepalistwouldalso
liketohearfromstudentswhohavesuggestionsforimprovingeitherthesolutionsorthe
problemsthemselves.Icanbereachedviae-mailatwooldril@..Ihopethatyou
findthissolutionsmanualhelpfulwhenusedinconjunctionwiththetext.Ilookforward
tohearingfromyou.
JeffreyM.Wooldridge
DepartmentofEconomics
MichiganStateUniversity
110Marshall-AdamsHall
EastLansing,MI48824-1038
iv
CHAPTER1
SOLUTIONSTOPROBLEMS
1.1Itdoesnotmakesensetoposethequestionintermsofcausality.Economists
wouldassumethatstudentschooseamixofstudyingandworking(andotheractivities,
suchasattendingclass,leisure,andsleepingbasedonrationalbehavior,suchas
maximizingutilitysubjecttotheconstraintthatthereareonly168hoursinaweek.We
canthenusestatisticalmethodstomeasuretheassociationbetweenstudyingandworking,
includingregressionanalysisthatwecoverstartinginChapter2.Butwewouldnotbe
claimingthatonevariable“causes“theother.Theyarebothchoicevariablesofthe
student.
1.2(iIdeally,wecouldrandomlyassignstudentstoclassesofdifferentsizes.Thatis,
eachstudentisassignedadifferentclasssizewithoutregardtoanystudentcharacteristics
suchasabilityandfamilybackground.ForreasonswewillseeinChapter2,wewould
likesubstantialvariationinclasssizes(subject,ofcourse,toethicalconsiderationsand
resourceconstraints,(iiAnegativecorrelationmeansthatlargerclasssizeisassociated
withlowerperformance.Wemightfindanegativecorrelationbecauselargerclasssize
actuallyhurtsperformance.However,withobservationaldata,thereareotherreasonswe
mightfindanegativerelationship.Forexample,childrenfrommoreaffluentfamilies
mightbemorelikelytoattendschoolswithsmallerclasssizes,andaffluentchildren
generallyscorebetteronstandardizedtests.Anotherpossibilityisthat,withinaschool,a
principalmightassignthebetterstudentstosmallerclasses.Or,someparentsmightinsist
theirchildrenareinthesmallerclasses,andthesesameparentstendtobemoreinvolved
intheirchildren'seducation.
(iiiGiventhepotentialfbrconfoundingfactors-someofwhicharelistedin(ii-
findinganegativecorrelationwouldnotbestrongevidencethatsmallerclasssizes
actuallyleadtobetterperformance.Somewayofcontrollingfortheconfoundingfactors
isneeded,andthisisthesubjectofmultipleregressionanalysis.
SOLUTIONSTOCOMPUTEREXERCISES
Cl.l(iTheaverageofeducisabout12.6years.Therearetwopeoplereportingzero
yearsofeducation,and19peoplereporting18yearsofeducation.
(iiTheaverageofwageisabout$5.90,whichseemslowintheyear2008.
(iiiUsingTableB-60inthe2004EconomicReportofthePresident,theCPIwas
56.9in1976and184.0in2003.
(ivToconvert1976dollarsinto2003dollars,weusetheratiooftheCPIs,whichis
184/56.93.23
Therefore,theaveragehourlywagein2003dollarsisroughly
3.23($5.90$19.06
whichisareasonablefigure.
1
(vThesamplecontains252women(thenumberofobservationswithfemale=1and
274men.
Cl.3(iThelargestis100,thesmallestis0.
(ii38outof1,823,orabout2.1percentofthesample.
(iii17
(ivTheaverageofmath4isabout71.9andtheaverageofread4isabout60.1.So,at
leastin2001,thereadingtestwashardertopass.
(vThesamplecorrelationbetweenmath4andread4isabout.843,whichisavery
highdegreeof(linearassociation.Notsurprisingly,schoolsthathavehighpassrateson
onetesthaveastrongtendencytohavehighpassratesontheothertest.
(viTheaverageofexpppisabout$5,194.87.Thestandarddeviationis$1,091.89,
whichshowsratherwidevariationinspendingperpupil.[Theminimumis$1,206.88and
themaximumis$11,957.64.]
2
CHAPTER2
SOLUTIONSTOPROBLEMS
2.2(iLetyi=GPAi,xi=ACTi,andn=8.Then=25.875,=3.2125,1
n
i(xi-(yi-=
5.8125,and1
n
i(xi-2=56.875.Fromequation(2.9,weobtaintheslopeas1
八=5.8125/56.875~.1022,roundedtofourplacesafterthedecimal.From(2.17,0
八=_1
=3.2125-(.102225.875..5681.SowecanwriteGPA
=.5681+.1022ACT
n=8.
TheinterceptdoesnothaveausefulinterpretationbecauseACTisnotclosetozero
forthe
populationofinterest.IfACTis5pointshigher,GPA
increasesby.1022(5=.511.
(iiThefittedvaluesandresiduals—roundedtofourdecimalplaces—aregiven
alongwiththeobservationnumberiandGPAinthefollowingtable:
iGPAGPA
u1
2.82.7143.085723.43.0209.379133.03.2253-.225343.53.3275.172553.6
3.5319.068163.03.1231-.123172.73.1231-.423183.7
3.6341.0659
Youcanverifythattheresiduals,asreportedinthetable,sumto.0002,whichis
prettyclosetozerogiventheinherentroundingerror.
(iiiWhenACT=20,GPA
=.5681+.1022(20=2.61.
(ivThesumofsquaredresiduals,21
X
iiu
,isabout.4347(roundedtofourdecimalplaces,andthetotalsumofsquares,1
n
i(yi-2,isabout1.0288.SotheR-squaredfromthe
regressionis
R2=1-SSR/SST=1-(.4347/1.0288工.577.
Therefore,about57.7%ofthevariationinGPAisexplainedbyACTinthissmall
sampleofstudents.
2.3(iIncome,age,andfamilybackground(suchasnumberofsiblingsarejustafew
possibilities.Itseemsthateachofthesecouldbecorrelatedwithyearsofeducation.
(Incomeandeducationareprobablypositivelycorrelated;ageandeducationmaybe
negativelycorrelatedbecausewomeninmorerecentcohortshave,onaverage,more
education;andnumberofsiblingsandeducationareprobablynegativelycorrelated.
(iiNotifthefactorswelistedinpart(iarecorrelatedwitheduc.Becausewewould
liketoholdthesefactorsfixed,theyarepartoftheerrorterm.Butifuiscorrelatedwith
educthenE(u|educ0,andsoSLR.4fails.
2.4(iWewouldwanttorandomlyassignthenumberofhoursinthepreparation
coursesothathoursisindependentofotherfactorsthataffectperformanceontheSAT.
Then,wewouldcollectinformationonSATscoreforeachstudentintheexperiment,
yieldingadataset
{(,}iisathoursin,wherenisthenumberofstudentswecanaffordtohave
inthestudy.Fromequation(2.7,weshouldtrytogetasmuchvariationinihoursasis
feasible.
(iiHerearethreefactors:innateability,familyincome,andgeneralhealthonthe
dayoftheexam.Ifwethinkstudentswithhighernativeintelligencethinktheydonot
needtopreparefortheSAT,thenabilityandhourswillbenegativelycorrelated.Family
incomewouldprobablybepositivelycorrelatedwithhours,becausehigherincome
familiescanmoreeasilyafford
preparationcourses.Rulingoutchronichealthproblems,healthonthedayofthe
examshouldberoughlyuncorrelatedwithhoursspentinapreparationcourse.
(iiiIfpreparationcoursesareeffective,1shouldbepositive:otherfactorsequal,an
increaseinhoursshouldincreasesat.
(ivTheintercept,0,hasausefulinterpretationinthisexample:becauseE(u=0,0is
theaverageSATscoreforstudentsinthepopulationwithhours=0.
2.5(iWhenweconditiononincE(ulineelineE(e|inc0becauseE(eline=E(e=0.
(iiAgain,whenweconditiononincVar(ulinee|inc2Var(e|inc=2eincbecause
Var(e|inc=2e.
(iiiFamilieswithlowincomesdonothavemuchdiscretionaboutspending;
typically,alow-incomefamilymustspendonfood,clothing,housing,andother
necessities.Higherincomepeoplehavemorediscretion,andsomemightchoosemore
consumptionwhileothersmoresaving.Thisdiscretionsuggestswidervariabilityin
savingamonghigherincomefamilies.
2.8(iWefollowthehint,notingthat1cy=1c(thesampleaverageoflicyisc1
timesthesampleaverageofyiand2=2c.Whenweregressclyionc2xi(including
aninterceptweuseequation(2.19toobtaintheslope:
22
11
121
1
1
2
2
2
22
2
11
11112
2
2
1
(((
((((
八.(
nn
ii
i
i
iii
i
iin
iiin
i
icxcxccccxycxccxxyccccx
From(2.17,weobtaintheinterceptas0=(c1-1(c2=(c1-[(c1/c2I
F(c2=c1(-1
=c10
becausetheinterceptfromregressingyionxiis(-1
(iiWeusethesameapproachfrompart(ialongwiththefactthat1(=c1+and
2(=c2+.Therefore,11((icy=(cl+yi-(cl+=yi-and(c2+xi-2(cx=
xi-.Soc1andc2entirelydropoutoftheslopeformulafortheregressionof(cl+
yion(c2+xi,and1
=1
八.Theinterceptis0
=1
(cy-1
2
(CX=(c1+-1
八(c2+=(r+c1-c2/=(T+c1-c21
八,whichiswhatwewantedtoshow.
(iiiWecansimplyapplypart(iibecause11log(log(log(iicycy.Inotherwords,
replacec1withlog(c1,yiwithlog(yi,andsetc2=0.
(ivAgain,wecanapplypart(iiwithc1=0andreplacingc2withlog(c2andxi
withlog(xi.IfOr"andaretheoriginalinterceptandslope,then1Tand002l"log(c.
2.9(iTheinterceptimpliesthatwheninc=0,consispredictedtobenegative
$124.84.This,ofcourse,cannotbetrue,andreflectsthatfactthatthisconsumption
functionmightbeapoorpredictorofconsumptionatverylow-incomelevels.Onthe
otherhand,onanannualbasis,$124.84isnotsofarfromzero.
(iiJustplug30,000intotheequation:
cons=-124.84+.853(30,000=25,465.16dollars.
(iiiTheMPCandtheAPCareshowninthefollowinggraph.Eventhoughthe
interceptisnegative,thesmallestAPCinthesampleispositive.Thegraphstartsatan
annualincomelevelof$1,000(in1970dollars.
SOLUTIONSTOCOMPUTEREXERCISES
C2.1(iTheaverageprateisabout87.36andtheaveragemrateisabout.732.
(iiTheestimatedequationis
prate=83.05+5.86mrate
n=1,534,R2=.075.
(iiiTheinterceptimpliesthat,evenifmrate=0,thepredictedparticipationrateis
83.05percent.Thecoefficientonmrateimpliesthataone-dollarincreaseinthematch
rate-afairlylargeincrease-isestimatedtoincreaseprateby5.86percentagepoints.
Thisassumes,of
course,thatthischangeprateispossible(if,say,prateisalreadyat98,this
interpretationmakesnosense.
(ivIfweplugmrate=3.5intotheequationweget"prate
=83.05+5.86(3.5=103.59.Thisisimpossible,aswecanhaveatmosta100
percentparticipationrate.Thisillustratesthat,especiallywhendependentvariablesare
bounded,asimpleregressionmodelcangivestrangepredictionsforextremevaluesof
theindependentvariable.(Inthesampleof1,534firms,only34havemrate3.5.
(vmrateexplainsabout7.5%ofthevariationinprate.Thisisnotmuch,and
suggeststhatmanyotherfactorsinfluence401(kplanparticipationrates.
C2.3(iTheestimatedequationis
sleep=3,586.4-.151totwrk
n=706,R2=.l()3.
Theinterceptimpliesthattheestimatedamountofsleepperweekfbrsomeonewho
doesnotworkis3,586.4minutes,orabout59.77hours.Thiscomestoabout8.5hours
pernight.
(iiIfsomeoneworkstwomorehoursperweekthentotwrk=120(becausetotwrkis
measuredinminutes,andsosleep
=-.151(120=-18.12minutes.Thisisonlyafewminutesanight.Ifsomeonewere
toworkonemorehouroneachoffiveworkingdays,sleep
=-.151(300=-45.3minutes,oraboutfiveminutesanight.
C2.5(iTheconstantelasticitymodelisalog-logmodel:
log(rd=0+1log(sales+u,
where1istheelasticityofrdwithrespecttosales.
(iiTheestimatedequationis
log(rd=-4.105+1.076log(sales
n=32,R2=.91O.
Theestimatedelasticityofrdwithrespecttosalesis1.076,whichisjustaboveone.
Aonepercentincreaseinsalesisestimatedtoincreaserdbyabout1.08%.
C2.7(iTheaveragegiftisabout7.44Dutchguilders.Outof4,268respondents,
2,561didnotgiveagift,orabout60percent.
(iiTheaveragemailingsperyearisabout2.05.Theminimumvalueis.25(which
presumablymeansthatsomeonehasbeenonthemailinglistforatleastfouryearsand
themaximumvalueis3.5.
(iiiTheestimatedequationis
2
2.012.654,268,.0138
gift
mailsyearnR
(ivTheslopecoefficientfrompart(iiimeansthateachmailingperyearisassociated
with-perhapseven"causes”-anestimated2.65additionalguilders,onaverage.
Therefore,ifeachmailingcostsoneguilder,theexpectedprofitfromeachmailingis
estimatedtobe1.65guilders.Thisisonlytheaverage,however.Somemailingsgenerate
nocontributions,oracontributionlessthanthemailingcost;othermailingsgenerated
muchmorethanthemailingcost.
(vBecausethesmallestmailsyearinthesampleis.25,thesmallestpredictedvalue
ofgiftsis2.01+2.65(.25=2.67.Evenifwelookattheoverallpopulation,wheresome
peoplehavereceivednomailings,thesmallestpredictedvalueisabouttwo.So,withthis
estimatedequation,weneverpredictzerocharitablegifts.
9
CHAPTER3
SOLUTIONSTOPROBLEMS
3.2(ihspercisdefinedsothatthesmalleritis,thelowerthestudent9sstandingin
highschool.Everythingelseequal,theworsethestudent'sstandinginhighschool,the
lowerishis/herexpectedcollegeGPA.(iiJustplugthesevaluesintotheequation:
colgpa
=1.392.0135(20+.00148(1050=2.676.
(iiiThedifferencebetweenAandBissimply140timesthecoefficientonsat,
becausehspercisthesameforbothstudents.SoAispredictedtohavea
score.00148(140=.207higher.
(ivWithhspercfixed,colgpa
=.00148sat.Now,wewanttofindsatsuchthatcolgpa
=.5,so.5=.00148(satorsat=.5/(.00148~338.Perhapsnotsurprisingly,alarge
ceterisparibusdifferenceinSATscore-almosttwoandone-halfstandarddeviations-is
neededtoobtainapredicteddifferenceincollegeGPAorahalfapoint.
3.4(iIfadultstradeoffsleepforwork,moreworkimplieslesssleep(otherthings
equal,so1<0.(iiThesignsof2and3arenotobvious,atleasttome.Onecouldargue
thatmoreeducatedpeopleliketogetmoreoutoflife,andso,otherthingsequal,they
sleepless(2<0.Therelationshipbetweensleepingandageismorecomplicatedthanthis
modelsuggests,andeconomistsarenotinthebestpositiontojudgesuchthings,(iii
Sincetotwrkisinminutes,wemustconvertfivehoursintominutes:totwrk=5(60=300.
Thensleepispredictedtofallby.148(300=44.4minutes.Foraweek,45minutesless
sleepisnotanoverwhelmingchange,(ivMoreeducationimplieslesspredictedtime
sleeping,buttheeffectisquitesmall.Ifweassumethedifferencebetweencollegeand
highschoolisfouryears,thecollegegraduatesleepsabout45minuteslessperweek,
otherthingsequal,(vNotsurprisingly,thethreeexplanatoryvariablesexplainonlyabout
11.3%ofthevariationinsleep.Oneimportantfactorintheerrortermisgeneralhealth.
Anotherismaritalstatus,andwhetherthepersonhaschildren.Health(howeverwe
measurethat,maritalstatus,andnumberandagesofchildrenwouldgenerallybe
correlatedwithtotwrk.(Forexample,lesshealthypeoplewouldtendtoworkless.
1()
3.6(iNo.Bydefinition,study+sleep+work+leisure=168.Therefore,ifwe
changestudy,wemustchangeatleastoneoftheothercategoriessothatthesumisstill
168.(iiFrompart(i,wecanwrite,say,studyasaperfectlinearfunctionoftheother
independentvariables:study=168sleepworkleisure.Thisholdsforevery
observation,soMLR.3violated,(iiiSimplydroponeoftheindependentvariables,say
leisure:
GPA=0+1study+2sleep+3work+u.
Now,forexample,1isinterpretedasthechangeinGPAwhenstudyincreasesby
onehour,wheresleep,work,anduareallheldfixed.Ifweareholdingsleepandwork
fixedbutincreasingstudybyonehour,thenwemustbereducingleisurebyonehour.
Theotherslopeparametershaveasimilarinterpretation.
3.8Only(ii,omittinganimportantvariable,cancausebias,andthisistrueonly
whentheomittedvariableiscorrelatedwiththeincludedexplanatoryvariables.The
homoskedasticityassumption,MLR.5,playednoroleinshowingthattheOLSestimators
areunbiased.
(HomoskedasticitywasusedtoobtaintheusualvarianceformulasfortheJ.Further,
thedegreeofcollinearitybetweentheexplanatoryvariablesinthesample,evenifitis
reflectedina
correlationashighas.95,doesnotaffecttheGauss-Markovassumptions.Onlyif
thereisaperfectlinearrelationshipamongtwoormoreexplanatoryvariablesisMLR.3
violated.
3.1()Fromequation(3.22wehave
11
1
21
1
n
ii
iiiry
r
wheretherir
aredefinedintheproblem.Asusual,wemustpluginthetruemodelforyi:
1()
1122331
2
1
1
n
iiiii
in
iirxxxur
11
Thenumeratorofthisexpressionsimplifiesbecause11
"niir
=0,121
Aniiirx=0,and111
"n
iiirx=2
11
n
iir.TheseallfollowfromthefactthatthePir
aretheresidualsfromtheregressionoflixon2ix:the1"ir
havezerosampleaverageandareuncorrelatedinsamplewith2ix.Sothe
numeratorof1
canbeexpressedas
2
11
3131111
….nnn
iiiiiiiir
rxru
Puttingthesebackoverthedenominatorgives
13
11
1113
221
1
1
1
n
n
iii
iin
n
iiiirx
ru
rr
Conditionalonallsamplevaluesonx1,x2,andx3,onlythelasttermisrandom
duetoitsdependenceonui.ButE(ui=0,andso
13
1
113
21
1
AE(=+J
n
iiin
11rx
r
whichiswhatwewantedtoshow.Noticethatthetermmultiplying3isthe
regression
coefficientfromthesimpleregressionofxi3on1'ir
3.11(i1<0becausemorepollutioncanbeexpectedtolowerhousingvalues;note
that1istheelasticityofpricewithrespecttonox.2isprobablypositivebecauserooms
roughlymeasuresthesizeofahouse.(However,itdoesnotallowustodistinguish
homeswhereeachroomislargefromhomeswhereeachroomissmall,(iiIfweassume
thatroomsincreaseswithqualityofthehome,thenlog(noxandroomsarenegatively
correlatedwhenpoorerneighborhoodshavemorepollution,somethingthatisoftentrue.
WecanuseTable3.2todeterminethedirectionofthebias.If2>0and
Corr(x1,x2<0,thesimpleregressionestimator1
hasadownwardbias.Butbecause1
<0,thismeansthatthesimpleregression,onaverage,overstatestheimportanceof
pollution.[E(l
ismorenegativethan1.]
12
(iiiThisiswhatweexpectfromthetypicalsamplebasedonouranalysisinpart(ii.
Thesimpleregressionestimate,1.043,ismorenegative(largerinmagnitudethanthe
multipleregressionestimate,.718.Asthoseestimatesareonlyforonesample,wecan
neverknowwhichisclosertol.Butifthisisa“typical“sample,1iscloserto.718.
3.12(iFornotationalsimplicity,defineszx=1(;n
iiizxthisisnotquitethesample
covariancebetweenzandxbecausewedonotdividebyn-1,butweareonly
usingitto
simplifynotation.Thenwecanwrite1
as
1
1
(・n
i
i
izx
zy
s
Thisisclearlyalinearfunctionoftheyi:taketheweightstobewi=(zi/szx.To
showunbiasedness,asusualweplugyi=0+1xi+uiintothisequation,andsimplify:
11
1
Oil
1
1
1(
(((n
i
iiizx
n
n
izxii
iizx
n
i
i
izx
zxuszszusz
us
whereweusethefactthatI
(n
iiz=0always.Nowszxisafunctionoftheziandxiandthe
expectedvalueofeachuiiszeroconditionalonallziandxiinthesample.
Therefore,conditional
onthesevalues,
1
11
K
E(n
i
i
izx
zus
becauseE(ui=0foralli.(iiFromthefourthequationinpart(iwehave(again
conditionalontheziandxiinthesample,
13
2
11
12
22
2
1
2Var((Var(
Var((nn
iii
iiizx
zx
n
i
izx
zuzusszs
becauseofthehomoskedasticityassumption[Var(ui=2foralli].Giventhe
definitionofszx,thisiswhatwewantedtoshow.
(iiiWeknowthatVar(l
八=2/21](].n
iixNowwecanrearrangetheinequalityinthehint,dropfromthesample
covariance,andcanceln-1
everywhere,toget22
1
[(]/n
izxizs>
21
l/[(].n
iixWhenwemultiplythroughby2wegetVar(lVar(l
八,whichiswhatwewantedtoshow.
SOLUTIONSTOCOMPUTEREXERCISES
C3.1(iProbably2>0,asmoreincometypicallymeansbetternutritionforthe
motherandbetterprenatalcare.(iiOntheonehand,anincreaseinincomegenerally
increasestheconsumptionofagood,andcigsandfaminecouldbepositivelycorrelated.
Ontheother,familyincomesarealsohigherforfamilieswithmoreeducation,andmore
educationandcigarettesmokingtendtobe
negativelycorrelated.Thesamplecorrelationbetweencigsandfamineisabout.173,
indicatinganegativecorrelation,(iiiTheregressionswithoutandwithfamineare
119.77.514bwghtcigs
21,388,.023nR
and116.97.463.093bwght
cigsfamine21,388,.03().nR
Theeffectofcigarettesmokingisslightlysmallerwhenfamineisaddedtothe
regression,butthedifferenceisnotgreat.Thisisduetothefactthatcigsandfamineare
notverycorrelated,andthecoefficientonfamineispracticallysmall.(Thevariable
famineismeasuredinthousands,so$10,000morein1988incomeincreasespredicted
birthweightbyonly.93ounces.
C3.3(iTheconstantelasticityequationis
log(4.62.1621og(.1071og(
salarysalesmktval
2
177,.299.
nR
(iiWecannotincludeprofitsinlogarithmicformbecauseprofitsarenegativefor
nineofthecompaniesinthesample.Whenweadditinlevelsformweget
log(4.69.1611og(.0981og(.000036
salarysalesmktvalprofits
2
177,.299.
nR
Thecoefficientonprofitsisverysmall.Here,profitsaremeasuredinmillions,soif
profitsincreaseby$1billion,whichmeansprofits
=1,000-ahugechange-predictedsalaryincreasesbyaboutonly3.6%,However,
rememberthatweareholdingsalesandmarketvaluefixed.
Together,thesevariables(andwecoulddropprofitswithoutlosinganythingexplain
almost30%ofthesamplevariationinlog(salary.Thisiscertainlynot"most"ofthe
variation,(iiiAddingceotentotheequationgives
log(4.56.1621og(.1021og(.000029.012
salarysalesmktvalprofitsceoten
2
177,.318.
nR
ThismeansthatonemoreyearasCEOincreasespredictedsalarybyabout1.2%.
(ivThesamplecorrelationbetweenlog(mktvalandprofitsisabout.78,whichis
fairlyhigh.Asweknow,thiscausesnobiasintheOLSestimators,althoughitcancause
theirvariancestobelarge.Giventhefairlysubstantialcorrelationbetweenmarketvalue
andfirmprofits,itisnottoosurprisingthatthelatteraddsnothingtoexplainingCEO
salaries.Also,profitsisashorttermmeasureofhowthefirmisdoingwhilemktvalis
basedonpast,current,andexpectedfutureprofitability.
14
C3.5Theregressionofeduconexperand
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版墓地使用权转售与墓园维护服务合同4篇
- 2025版园艺树苗种植合作合同范本范文3篇
- 安徽省芜湖市无为市2024-2025学年七年级上学期期末地理试题(含答案)
- 仪器仪表在智能娱乐与虚拟现实体验中的应用考核试卷
- 小麦种植农业土地流转研究考核试卷
- 二零二五年度木雕工艺研发与创新合作合同4篇
- 2025年受欢迎广告协议指南大揭秘攻略
- 2025年化工品批发合同
- 2025年孕妇健身指导服务协议
- 2025年高端纸质信封印刷定制委托协议6篇
- 2025年上半年江苏连云港灌云县招聘“乡村振兴专干”16人易考易错模拟试题(共500题)试卷后附参考答案
- DB3301T 0382-2022 公共资源交易开评标数字见证服务规范
- 人教版2024-2025学年八年级上学期数学期末压轴题练习
- 江苏省无锡市2023-2024学年八年级上学期期末数学试题(原卷版)
- 俄语版:中国文化概论之中国的传统节日
- 2022年湖南省公务员录用考试《申论》真题(县乡卷)及答案解析
- 妇科一病一品护理汇报
- 2024年全国统一高考数学试卷(新高考Ⅱ)含答案
- 移动商务内容运营(吴洪贵)任务四 引起受众传播内容要素的掌控
- 绘本《汪汪的生日派对》
- 助产护理毕业论文
评论
0/150
提交评论