伍德里奇《计量经济学导论(第四版)》课后习题答案和讲解_第1页
伍德里奇《计量经济学导论(第四版)》课后习题答案和讲解_第2页
伍德里奇《计量经济学导论(第四版)》课后习题答案和讲解_第3页
伍德里奇《计量经济学导论(第四版)》课后习题答案和讲解_第4页
伍德里奇《计量经济学导论(第四版)》课后习题答案和讲解_第5页
已阅读5页,还剩71页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

STUDENTSOLUTIONSMANUALJeffreyM.Wooldridge

IntroductoryEconometrics:AModernApproach,4e

CONTENTS

PrefaceivChapter1Introduction1Chapter2TheSimpleRegressionModel3

Chapter3MultipleRegressionAnalysis:Estimation9Chapter4MultipleRegression

Analysis:Inference17Chapter5MultipleRegressionAnalysis:OLSAsymptotics24

Chapter6MultipleRegressionAnalysis:FurtherIssues27Chapter7Multiple

RegressionAnalysisWithQualitative34Information:Binary(orDummyVariables

Chapter8Heteroskedasticity42Chapter9MoreonSpecificationandData

Problems47Chapter10BasicRegressionAnalysisWithTimeSeriesData52Chapter11

FurtherIssuesinUsingOLSWithTimeSeriesData58Chapter12SerialCorrelationand

Heteroskedasticityin65TimeSeriesRegressions

Chapter13PoolingCrossSectionsAcrossTime.Simple71PanelDataMethods

Chapter14AdvancedPanelDataMethods78Chapter15InstrumentalVariables

EstimationandTwoStage85LeastSquares

Chapter16SimultaneousEquationsModels92Chapter17LimitedDependent

VariableModelsandSample99SelectionCorrections

Chapter18AdvancedTimeSeriesTopics110

ii

AppendixABasicMathematicalTools117AppendixBFundamentalsof

Probability119AppendixCFundamentalsofMathematicalStatistics120AppendixD

SummaryofMatrixAlgebra122AppendixETheLinearRegressionModelinMatrix

Form123

iii

PREFACE

Thismanualcontainssolutionstotheodd-numberedproblemsandcomputer

exercisesinIntroductoryEconometrics:AModernApproach,4e.Hopefully,youwill

findthatthesolutionsaredetailedenoughtoactasastudysupplementtothetext.Rather

thanjustpresentingthefinalanswer,Iusuallyprovidedetailedsteps,emphasizingwhere

thechaptermaterialisusedinsolvingtheproblems.

Someoftheanswersgivenherearesubjective,andyouoryourinstructormayhave

perfectlyacceptablealternativeanswersoropinions.

IobtainedthesolutionstothecomputerexercisesusingStata,startingwithversion

4.0

andendingwithversion9.0.Nevertheless,almostalloftheestimationmethods

coveredinthetexthavebeenstandardized,anddifferenteconometricsorstatistical

packagesshouldgivethesameanswerstothereporteddegreeofaccuracy.Therecanbe

differenceswhenapplyingmoreadvancedtechniques,asconventionssometimesdiffer

onhowtochooseorestimateauxiliaryparameters.(Examplesincludeheteroskedasticity-

robuststandarderrors,estimatesofarandomeffectsmodel,andcorrectionsforsample

selectionbias.Anydifferencesinestimatesorteststatisticsshouldbepractically

unimportant,providedyouareusingareasonablylargesamplesize.WhileIhave

endeavoredtomakethesolutionsfreeofmistakes,someerrorsmayhavecreptin.I

wouldappreciatehearingfromstudentswhofindmistakes.Iwillkeepalistwouldalso

liketohearfromstudentswhohavesuggestionsforimprovingeitherthesolutionsorthe

problemsthemselves.Icanbereachedviae-mailatwooldril@..Ihopethatyou

findthissolutionsmanualhelpfulwhenusedinconjunctionwiththetext.Ilookforward

tohearingfromyou.

JeffreyM.Wooldridge

DepartmentofEconomics

MichiganStateUniversity

110Marshall-AdamsHall

EastLansing,MI48824-1038

iv

CHAPTER1

SOLUTIONSTOPROBLEMS

1.1Itdoesnotmakesensetoposethequestionintermsofcausality.Economists

wouldassumethatstudentschooseamixofstudyingandworking(andotheractivities,

suchasattendingclass,leisure,andsleepingbasedonrationalbehavior,suchas

maximizingutilitysubjecttotheconstraintthatthereareonly168hoursinaweek.We

canthenusestatisticalmethodstomeasuretheassociationbetweenstudyingandworking,

includingregressionanalysisthatwecoverstartinginChapter2.Butwewouldnotbe

claimingthatonevariable“causes“theother.Theyarebothchoicevariablesofthe

student.

1.2(iIdeally,wecouldrandomlyassignstudentstoclassesofdifferentsizes.Thatis,

eachstudentisassignedadifferentclasssizewithoutregardtoanystudentcharacteristics

suchasabilityandfamilybackground.ForreasonswewillseeinChapter2,wewould

likesubstantialvariationinclasssizes(subject,ofcourse,toethicalconsiderationsand

resourceconstraints,(iiAnegativecorrelationmeansthatlargerclasssizeisassociated

withlowerperformance.Wemightfindanegativecorrelationbecauselargerclasssize

actuallyhurtsperformance.However,withobservationaldata,thereareotherreasonswe

mightfindanegativerelationship.Forexample,childrenfrommoreaffluentfamilies

mightbemorelikelytoattendschoolswithsmallerclasssizes,andaffluentchildren

generallyscorebetteronstandardizedtests.Anotherpossibilityisthat,withinaschool,a

principalmightassignthebetterstudentstosmallerclasses.Or,someparentsmightinsist

theirchildrenareinthesmallerclasses,andthesesameparentstendtobemoreinvolved

intheirchildren'seducation.

(iiiGiventhepotentialfbrconfoundingfactors-someofwhicharelistedin(ii-

findinganegativecorrelationwouldnotbestrongevidencethatsmallerclasssizes

actuallyleadtobetterperformance.Somewayofcontrollingfortheconfoundingfactors

isneeded,andthisisthesubjectofmultipleregressionanalysis.

SOLUTIONSTOCOMPUTEREXERCISES

Cl.l(iTheaverageofeducisabout12.6years.Therearetwopeoplereportingzero

yearsofeducation,and19peoplereporting18yearsofeducation.

(iiTheaverageofwageisabout$5.90,whichseemslowintheyear2008.

(iiiUsingTableB-60inthe2004EconomicReportofthePresident,theCPIwas

56.9in1976and184.0in2003.

(ivToconvert1976dollarsinto2003dollars,weusetheratiooftheCPIs,whichis

184/56.93.23

Therefore,theaveragehourlywagein2003dollarsisroughly

3.23($5.90$19.06

whichisareasonablefigure.

1

(vThesamplecontains252women(thenumberofobservationswithfemale=1and

274men.

Cl.3(iThelargestis100,thesmallestis0.

(ii38outof1,823,orabout2.1percentofthesample.

(iii17

(ivTheaverageofmath4isabout71.9andtheaverageofread4isabout60.1.So,at

leastin2001,thereadingtestwashardertopass.

(vThesamplecorrelationbetweenmath4andread4isabout.843,whichisavery

highdegreeof(linearassociation.Notsurprisingly,schoolsthathavehighpassrateson

onetesthaveastrongtendencytohavehighpassratesontheothertest.

(viTheaverageofexpppisabout$5,194.87.Thestandarddeviationis$1,091.89,

whichshowsratherwidevariationinspendingperpupil.[Theminimumis$1,206.88and

themaximumis$11,957.64.]

2

CHAPTER2

SOLUTIONSTOPROBLEMS

2.2(iLetyi=GPAi,xi=ACTi,andn=8.Then=25.875,=3.2125,1

n

i(xi-(yi-=

5.8125,and1

n

i(xi-2=56.875.Fromequation(2.9,weobtaintheslopeas1

八=5.8125/56.875~.1022,roundedtofourplacesafterthedecimal.From(2.17,0

八=_1

=3.2125-(.102225.875..5681.SowecanwriteGPA

=.5681+.1022ACT

n=8.

TheinterceptdoesnothaveausefulinterpretationbecauseACTisnotclosetozero

forthe

populationofinterest.IfACTis5pointshigher,GPA

increasesby.1022(5=.511.

(iiThefittedvaluesandresiduals—roundedtofourdecimalplaces—aregiven

alongwiththeobservationnumberiandGPAinthefollowingtable:

iGPAGPA

u1

2.82.7143.085723.43.0209.379133.03.2253-.225343.53.3275.172553.6

3.5319.068163.03.1231-.123172.73.1231-.423183.7

3.6341.0659

Youcanverifythattheresiduals,asreportedinthetable,sumto.0002,whichis

prettyclosetozerogiventheinherentroundingerror.

(iiiWhenACT=20,GPA

=.5681+.1022(20=2.61.

(ivThesumofsquaredresiduals,21

X

iiu

,isabout.4347(roundedtofourdecimalplaces,andthetotalsumofsquares,1

n

i(yi-2,isabout1.0288.SotheR-squaredfromthe

regressionis

R2=1-SSR/SST=1-(.4347/1.0288工.577.

Therefore,about57.7%ofthevariationinGPAisexplainedbyACTinthissmall

sampleofstudents.

2.3(iIncome,age,andfamilybackground(suchasnumberofsiblingsarejustafew

possibilities.Itseemsthateachofthesecouldbecorrelatedwithyearsofeducation.

(Incomeandeducationareprobablypositivelycorrelated;ageandeducationmaybe

negativelycorrelatedbecausewomeninmorerecentcohortshave,onaverage,more

education;andnumberofsiblingsandeducationareprobablynegativelycorrelated.

(iiNotifthefactorswelistedinpart(iarecorrelatedwitheduc.Becausewewould

liketoholdthesefactorsfixed,theyarepartoftheerrorterm.Butifuiscorrelatedwith

educthenE(u|educ0,andsoSLR.4fails.

2.4(iWewouldwanttorandomlyassignthenumberofhoursinthepreparation

coursesothathoursisindependentofotherfactorsthataffectperformanceontheSAT.

Then,wewouldcollectinformationonSATscoreforeachstudentintheexperiment,

yieldingadataset

{(,}iisathoursin,wherenisthenumberofstudentswecanaffordtohave

inthestudy.Fromequation(2.7,weshouldtrytogetasmuchvariationinihoursasis

feasible.

(iiHerearethreefactors:innateability,familyincome,andgeneralhealthonthe

dayoftheexam.Ifwethinkstudentswithhighernativeintelligencethinktheydonot

needtopreparefortheSAT,thenabilityandhourswillbenegativelycorrelated.Family

incomewouldprobablybepositivelycorrelatedwithhours,becausehigherincome

familiescanmoreeasilyafford

preparationcourses.Rulingoutchronichealthproblems,healthonthedayofthe

examshouldberoughlyuncorrelatedwithhoursspentinapreparationcourse.

(iiiIfpreparationcoursesareeffective,1shouldbepositive:otherfactorsequal,an

increaseinhoursshouldincreasesat.

(ivTheintercept,0,hasausefulinterpretationinthisexample:becauseE(u=0,0is

theaverageSATscoreforstudentsinthepopulationwithhours=0.

2.5(iWhenweconditiononincE(ulineelineE(e|inc0becauseE(eline=E(e=0.

(iiAgain,whenweconditiononincVar(ulinee|inc2Var(e|inc=2eincbecause

Var(e|inc=2e.

(iiiFamilieswithlowincomesdonothavemuchdiscretionaboutspending;

typically,alow-incomefamilymustspendonfood,clothing,housing,andother

necessities.Higherincomepeoplehavemorediscretion,andsomemightchoosemore

consumptionwhileothersmoresaving.Thisdiscretionsuggestswidervariabilityin

savingamonghigherincomefamilies.

2.8(iWefollowthehint,notingthat1cy=1c(thesampleaverageoflicyisc1

timesthesampleaverageofyiand2=2c.Whenweregressclyionc2xi(including

aninterceptweuseequation(2.19toobtaintheslope:

22

11

121

1

1

2

2

2

22

2

11

11112

2

2

1

(((

((((

八.(

nn

ii

i

i

iii

i

iin

iiin

i

icxcxccccxycxccxxyccccx

From(2.17,weobtaintheinterceptas0=(c1-1(c2=(c1-[(c1/c2I

F(c2=c1(-1

=c10

becausetheinterceptfromregressingyionxiis(-1

(iiWeusethesameapproachfrompart(ialongwiththefactthat1(=c1+and

2(=c2+.Therefore,11((icy=(cl+yi-(cl+=yi-and(c2+xi-2(cx=

xi-.Soc1andc2entirelydropoutoftheslopeformulafortheregressionof(cl+

yion(c2+xi,and1

=1

八.Theinterceptis0

=1

(cy-1

2

(CX=(c1+-1

八(c2+=(r+c1-c2/=(T+c1-c21

八,whichiswhatwewantedtoshow.

(iiiWecansimplyapplypart(iibecause11log(log(log(iicycy.Inotherwords,

replacec1withlog(c1,yiwithlog(yi,andsetc2=0.

(ivAgain,wecanapplypart(iiwithc1=0andreplacingc2withlog(c2andxi

withlog(xi.IfOr"andaretheoriginalinterceptandslope,then1Tand002l"log(c.

2.9(iTheinterceptimpliesthatwheninc=0,consispredictedtobenegative

$124.84.This,ofcourse,cannotbetrue,andreflectsthatfactthatthisconsumption

functionmightbeapoorpredictorofconsumptionatverylow-incomelevels.Onthe

otherhand,onanannualbasis,$124.84isnotsofarfromzero.

(iiJustplug30,000intotheequation:

cons=-124.84+.853(30,000=25,465.16dollars.

(iiiTheMPCandtheAPCareshowninthefollowinggraph.Eventhoughthe

interceptisnegative,thesmallestAPCinthesampleispositive.Thegraphstartsatan

annualincomelevelof$1,000(in1970dollars.

SOLUTIONSTOCOMPUTEREXERCISES

C2.1(iTheaverageprateisabout87.36andtheaveragemrateisabout.732.

(iiTheestimatedequationis

prate=83.05+5.86mrate

n=1,534,R2=.075.

(iiiTheinterceptimpliesthat,evenifmrate=0,thepredictedparticipationrateis

83.05percent.Thecoefficientonmrateimpliesthataone-dollarincreaseinthematch

rate-afairlylargeincrease-isestimatedtoincreaseprateby5.86percentagepoints.

Thisassumes,of

course,thatthischangeprateispossible(if,say,prateisalreadyat98,this

interpretationmakesnosense.

(ivIfweplugmrate=3.5intotheequationweget"prate

=83.05+5.86(3.5=103.59.Thisisimpossible,aswecanhaveatmosta100

percentparticipationrate.Thisillustratesthat,especiallywhendependentvariablesare

bounded,asimpleregressionmodelcangivestrangepredictionsforextremevaluesof

theindependentvariable.(Inthesampleof1,534firms,only34havemrate3.5.

(vmrateexplainsabout7.5%ofthevariationinprate.Thisisnotmuch,and

suggeststhatmanyotherfactorsinfluence401(kplanparticipationrates.

C2.3(iTheestimatedequationis

sleep=3,586.4-.151totwrk

n=706,R2=.l()3.

Theinterceptimpliesthattheestimatedamountofsleepperweekfbrsomeonewho

doesnotworkis3,586.4minutes,orabout59.77hours.Thiscomestoabout8.5hours

pernight.

(iiIfsomeoneworkstwomorehoursperweekthentotwrk=120(becausetotwrkis

measuredinminutes,andsosleep

=-.151(120=-18.12minutes.Thisisonlyafewminutesanight.Ifsomeonewere

toworkonemorehouroneachoffiveworkingdays,sleep

=-.151(300=-45.3minutes,oraboutfiveminutesanight.

C2.5(iTheconstantelasticitymodelisalog-logmodel:

log(rd=0+1log(sales+u,

where1istheelasticityofrdwithrespecttosales.

(iiTheestimatedequationis

log(rd=-4.105+1.076log(sales

n=32,R2=.91O.

Theestimatedelasticityofrdwithrespecttosalesis1.076,whichisjustaboveone.

Aonepercentincreaseinsalesisestimatedtoincreaserdbyabout1.08%.

C2.7(iTheaveragegiftisabout7.44Dutchguilders.Outof4,268respondents,

2,561didnotgiveagift,orabout60percent.

(iiTheaveragemailingsperyearisabout2.05.Theminimumvalueis.25(which

presumablymeansthatsomeonehasbeenonthemailinglistforatleastfouryearsand

themaximumvalueis3.5.

(iiiTheestimatedequationis

2

2.012.654,268,.0138

gift

mailsyearnR

(ivTheslopecoefficientfrompart(iiimeansthateachmailingperyearisassociated

with-perhapseven"causes”-anestimated2.65additionalguilders,onaverage.

Therefore,ifeachmailingcostsoneguilder,theexpectedprofitfromeachmailingis

estimatedtobe1.65guilders.Thisisonlytheaverage,however.Somemailingsgenerate

nocontributions,oracontributionlessthanthemailingcost;othermailingsgenerated

muchmorethanthemailingcost.

(vBecausethesmallestmailsyearinthesampleis.25,thesmallestpredictedvalue

ofgiftsis2.01+2.65(.25=2.67.Evenifwelookattheoverallpopulation,wheresome

peoplehavereceivednomailings,thesmallestpredictedvalueisabouttwo.So,withthis

estimatedequation,weneverpredictzerocharitablegifts.

9

CHAPTER3

SOLUTIONSTOPROBLEMS

3.2(ihspercisdefinedsothatthesmalleritis,thelowerthestudent9sstandingin

highschool.Everythingelseequal,theworsethestudent'sstandinginhighschool,the

lowerishis/herexpectedcollegeGPA.(iiJustplugthesevaluesintotheequation:

colgpa

=1.392.0135(20+.00148(1050=2.676.

(iiiThedifferencebetweenAandBissimply140timesthecoefficientonsat,

becausehspercisthesameforbothstudents.SoAispredictedtohavea

score.00148(140=.207higher.

(ivWithhspercfixed,colgpa

=.00148sat.Now,wewanttofindsatsuchthatcolgpa

=.5,so.5=.00148(satorsat=.5/(.00148~338.Perhapsnotsurprisingly,alarge

ceterisparibusdifferenceinSATscore-almosttwoandone-halfstandarddeviations-is

neededtoobtainapredicteddifferenceincollegeGPAorahalfapoint.

3.4(iIfadultstradeoffsleepforwork,moreworkimplieslesssleep(otherthings

equal,so1<0.(iiThesignsof2and3arenotobvious,atleasttome.Onecouldargue

thatmoreeducatedpeopleliketogetmoreoutoflife,andso,otherthingsequal,they

sleepless(2<0.Therelationshipbetweensleepingandageismorecomplicatedthanthis

modelsuggests,andeconomistsarenotinthebestpositiontojudgesuchthings,(iii

Sincetotwrkisinminutes,wemustconvertfivehoursintominutes:totwrk=5(60=300.

Thensleepispredictedtofallby.148(300=44.4minutes.Foraweek,45minutesless

sleepisnotanoverwhelmingchange,(ivMoreeducationimplieslesspredictedtime

sleeping,buttheeffectisquitesmall.Ifweassumethedifferencebetweencollegeand

highschoolisfouryears,thecollegegraduatesleepsabout45minuteslessperweek,

otherthingsequal,(vNotsurprisingly,thethreeexplanatoryvariablesexplainonlyabout

11.3%ofthevariationinsleep.Oneimportantfactorintheerrortermisgeneralhealth.

Anotherismaritalstatus,andwhetherthepersonhaschildren.Health(howeverwe

measurethat,maritalstatus,andnumberandagesofchildrenwouldgenerallybe

correlatedwithtotwrk.(Forexample,lesshealthypeoplewouldtendtoworkless.

1()

3.6(iNo.Bydefinition,study+sleep+work+leisure=168.Therefore,ifwe

changestudy,wemustchangeatleastoneoftheothercategoriessothatthesumisstill

168.(iiFrompart(i,wecanwrite,say,studyasaperfectlinearfunctionoftheother

independentvariables:study=168sleepworkleisure.Thisholdsforevery

observation,soMLR.3violated,(iiiSimplydroponeoftheindependentvariables,say

leisure:

GPA=0+1study+2sleep+3work+u.

Now,forexample,1isinterpretedasthechangeinGPAwhenstudyincreasesby

onehour,wheresleep,work,anduareallheldfixed.Ifweareholdingsleepandwork

fixedbutincreasingstudybyonehour,thenwemustbereducingleisurebyonehour.

Theotherslopeparametershaveasimilarinterpretation.

3.8Only(ii,omittinganimportantvariable,cancausebias,andthisistrueonly

whentheomittedvariableiscorrelatedwiththeincludedexplanatoryvariables.The

homoskedasticityassumption,MLR.5,playednoroleinshowingthattheOLSestimators

areunbiased.

(HomoskedasticitywasusedtoobtaintheusualvarianceformulasfortheJ.Further,

thedegreeofcollinearitybetweentheexplanatoryvariablesinthesample,evenifitis

reflectedina

correlationashighas.95,doesnotaffecttheGauss-Markovassumptions.Onlyif

thereisaperfectlinearrelationshipamongtwoormoreexplanatoryvariablesisMLR.3

violated.

3.1()Fromequation(3.22wehave

11

1

21

1

n

ii

iiiry

r

wheretherir

aredefinedintheproblem.Asusual,wemustpluginthetruemodelforyi:

1()

1122331

2

1

1

n

iiiii

in

iirxxxur

11

Thenumeratorofthisexpressionsimplifiesbecause11

"niir

=0,121

Aniiirx=0,and111

"n

iiirx=2

11

n

iir.TheseallfollowfromthefactthatthePir

aretheresidualsfromtheregressionoflixon2ix:the1"ir

havezerosampleaverageandareuncorrelatedinsamplewith2ix.Sothe

numeratorof1

canbeexpressedas

2

11

3131111

….nnn

iiiiiiiir

rxru

Puttingthesebackoverthedenominatorgives

13

11

1113

221

1

1

1

n

n

iii

iin

n

iiiirx

ru

rr

Conditionalonallsamplevaluesonx1,x2,andx3,onlythelasttermisrandom

duetoitsdependenceonui.ButE(ui=0,andso

13

1

113

21

1

AE(=+J

n

iiin

11rx

r

whichiswhatwewantedtoshow.Noticethatthetermmultiplying3isthe

regression

coefficientfromthesimpleregressionofxi3on1'ir

3.11(i1<0becausemorepollutioncanbeexpectedtolowerhousingvalues;note

that1istheelasticityofpricewithrespecttonox.2isprobablypositivebecauserooms

roughlymeasuresthesizeofahouse.(However,itdoesnotallowustodistinguish

homeswhereeachroomislargefromhomeswhereeachroomissmall,(iiIfweassume

thatroomsincreaseswithqualityofthehome,thenlog(noxandroomsarenegatively

correlatedwhenpoorerneighborhoodshavemorepollution,somethingthatisoftentrue.

WecanuseTable3.2todeterminethedirectionofthebias.If2>0and

Corr(x1,x2<0,thesimpleregressionestimator1

hasadownwardbias.Butbecause1

<0,thismeansthatthesimpleregression,onaverage,overstatestheimportanceof

pollution.[E(l

ismorenegativethan1.]

12

(iiiThisiswhatweexpectfromthetypicalsamplebasedonouranalysisinpart(ii.

Thesimpleregressionestimate,1.043,ismorenegative(largerinmagnitudethanthe

multipleregressionestimate,.718.Asthoseestimatesareonlyforonesample,wecan

neverknowwhichisclosertol.Butifthisisa“typical“sample,1iscloserto.718.

3.12(iFornotationalsimplicity,defineszx=1(;n

iiizxthisisnotquitethesample

covariancebetweenzandxbecausewedonotdividebyn-1,butweareonly

usingitto

simplifynotation.Thenwecanwrite1

as

1

1

(・n

i

i

izx

zy

s

Thisisclearlyalinearfunctionoftheyi:taketheweightstobewi=(zi/szx.To

showunbiasedness,asusualweplugyi=0+1xi+uiintothisequation,andsimplify:

11

1

Oil

1

1

1(

(((n

i

iiizx

n

n

izxii

iizx

n

i

i

izx

zxuszszusz

us

whereweusethefactthatI

(n

iiz=0always.Nowszxisafunctionoftheziandxiandthe

expectedvalueofeachuiiszeroconditionalonallziandxiinthesample.

Therefore,conditional

onthesevalues,

1

11

K

E(n

i

i

izx

zus

becauseE(ui=0foralli.(iiFromthefourthequationinpart(iwehave(again

conditionalontheziandxiinthesample,

13

2

11

12

22

2

1

2Var((Var(

Var((nn

iii

iiizx

zx

n

i

izx

zuzusszs

becauseofthehomoskedasticityassumption[Var(ui=2foralli].Giventhe

definitionofszx,thisiswhatwewantedtoshow.

(iiiWeknowthatVar(l

八=2/21](].n

iixNowwecanrearrangetheinequalityinthehint,dropfromthesample

covariance,andcanceln-1

everywhere,toget22

1

[(]/n

izxizs>

21

l/[(].n

iixWhenwemultiplythroughby2wegetVar(lVar(l

八,whichiswhatwewantedtoshow.

SOLUTIONSTOCOMPUTEREXERCISES

C3.1(iProbably2>0,asmoreincometypicallymeansbetternutritionforthe

motherandbetterprenatalcare.(iiOntheonehand,anincreaseinincomegenerally

increasestheconsumptionofagood,andcigsandfaminecouldbepositivelycorrelated.

Ontheother,familyincomesarealsohigherforfamilieswithmoreeducation,andmore

educationandcigarettesmokingtendtobe

negativelycorrelated.Thesamplecorrelationbetweencigsandfamineisabout.173,

indicatinganegativecorrelation,(iiiTheregressionswithoutandwithfamineare

119.77.514bwghtcigs

21,388,.023nR

and116.97.463.093bwght

cigsfamine21,388,.03().nR

Theeffectofcigarettesmokingisslightlysmallerwhenfamineisaddedtothe

regression,butthedifferenceisnotgreat.Thisisduetothefactthatcigsandfamineare

notverycorrelated,andthecoefficientonfamineispracticallysmall.(Thevariable

famineismeasuredinthousands,so$10,000morein1988incomeincreasespredicted

birthweightbyonly.93ounces.

C3.3(iTheconstantelasticityequationis

log(4.62.1621og(.1071og(

salarysalesmktval

2

177,.299.

nR

(iiWecannotincludeprofitsinlogarithmicformbecauseprofitsarenegativefor

nineofthecompaniesinthesample.Whenweadditinlevelsformweget

log(4.69.1611og(.0981og(.000036

salarysalesmktvalprofits

2

177,.299.

nR

Thecoefficientonprofitsisverysmall.Here,profitsaremeasuredinmillions,soif

profitsincreaseby$1billion,whichmeansprofits

=1,000-ahugechange-predictedsalaryincreasesbyaboutonly3.6%,However,

rememberthatweareholdingsalesandmarketvaluefixed.

Together,thesevariables(andwecoulddropprofitswithoutlosinganythingexplain

almost30%ofthesamplevariationinlog(salary.Thisiscertainlynot"most"ofthe

variation,(iiiAddingceotentotheequationgives

log(4.56.1621og(.1021og(.000029.012

salarysalesmktvalprofitsceoten

2

177,.318.

nR

ThismeansthatonemoreyearasCEOincreasespredictedsalarybyabout1.2%.

(ivThesamplecorrelationbetweenlog(mktvalandprofitsisabout.78,whichis

fairlyhigh.Asweknow,thiscausesnobiasintheOLSestimators,althoughitcancause

theirvariancestobelarge.Giventhefairlysubstantialcorrelationbetweenmarketvalue

andfirmprofits,itisnottoosurprisingthatthelatteraddsnothingtoexplainingCEO

salaries.Also,profitsisashorttermmeasureofhowthefirmisdoingwhilemktvalis

basedonpast,current,andexpectedfutureprofitability.

14

C3.5Theregressionofeduconexperand

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论