2023年上海市虹口区名校八年级数学第二学期期末检测模拟试题含解析_第1页
2023年上海市虹口区名校八年级数学第二学期期末检测模拟试题含解析_第2页
2023年上海市虹口区名校八年级数学第二学期期末检测模拟试题含解析_第3页
2023年上海市虹口区名校八年级数学第二学期期末检测模拟试题含解析_第4页
2023年上海市虹口区名校八年级数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.我市某一周每天的最高气温统计如下(单位:℃):27,28,1,28,1,30,1.这组数据的众数与中位数分别是().A.28,28 B.28,1 C.1,28 D.1,12.某商品的标价比成本价高m%,现根据市场需要,该商品需降价n%岀售.为了使获利不低于10%,n应满足()A. B.C. D.3.一个三角形的两边长分别是3和7,则第三边长可能是()A.2 B.3 C.9 D.104.如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB生长在它的正中央,高出水面部分BC的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′,则这根芦苇AB的长是()A.15尺 B.16尺 C.17尺 D.18尺5.下列调查中,适合采用普查的是()A.了解一批电视机的使用寿命B.了解全省学生的家庭1周内丢弃塑料袋的数量C.了解某校八(2)班学生的身高D.了解淮安市中学生的近视率6.设三角形的三边长分别等于下列各组数,能构成直角三角形的是(

)A.,,

B.,,

C.,,

D.4,5,67.如图,在四边形中,,点分别为线段上的动点(含端点,但点不与点重合),点分别为的中点,则长度的最大值为()A. B. C. D.8.已知小强家、体育馆、文具店在同一直线上如图中的图象反映的过程是:小强从家跑步去体育馆,在那里锻炼了一阵后又走到文具店去买笔,然后散步回家.下列信息中正确的是()A.小强在体育馆花了20分钟锻炼B.小强从家跑步去体育场的速度是10km/hC.体育馆与文具店的距离是3kmD.小强从文具店散步回家用了90分钟9.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.6 B.8 C.10 D.1210.一次函数y=﹣x+2的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为()A. B.13 C.6 D.2512.已知正比例函数y=(m﹣8)x的图象过第二、四象限,则m的取值范围是()A.m≥8 B.m>8 C.m≤8 D.m<8二、填空题(每题4分,共24分)13.如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于_____.14.若为二次根式,则的取值范围是__________15.如图,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为16,则▱ABCD的两条对角线的和是______16.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确结论的序号是________________17.已知,,则代数式的值为________.18.化简,52=______;-52=________;9=三、解答题(共78分)19.(8分)如图,在矩形ABCD中,AC、BD相交于点O,过点A作BD的平行线AE交CB的延长线于点E.(1)求证:BE=BC;(2)过点C作CF⊥BD于点F,并延长CF交AE于点G,连接OG.若BF=3,CF=6,求四边形BOGE的周长.20.(8分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.21.(8分)已知:一个正比例函数与一个一次函数的图象交于点A(1,4)且一次函数的图象与x轴交于点B(3,0),坐标原点为O.(1)求正比例函数与一次函数的解析式;(2)若一次函数交与y轴于点C,求△ACO的面积.22.(10分)已知一次函数y=kx+b,当x=2时y的值是﹣1,当x=﹣1时y的值是1.(1)求此一次函数的解析式;(2)若点P(m,n)是此函数图象上的一点,﹣3≤m≤2,求n的最大值.23.(10分)阅读下列解题过程,并解答后面的问题:如图,在平面直角坐标系中,,,C为线段AB的中点,求C的坐标.解:分别过A,C作x轴的平行线,过B,C作y轴的平行线,两组平行线的交点如图1.设C的坐标为,则D、E、F的坐标为,,由图可知:,∴C的坐标为问题:(1)已知A(-1,4),B(3,-2),则线段AB的中点坐标为______(2)平行四边形ABCD中,点A、B、C的坐标分别为(1,-4),(0,2),(5,6),求D的坐标.(3)如图2,B(6,4)在函数的图象上,A的坐标为(5,2),C在x轴上,D在函数的图象上,以A、B、C、D四个点为顶点构成平行四边形,直接写出所有满足条件的D点的坐标.24.(10分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米.(1)求路灯A的高度;(2)当王华再向前走2米,到达F处时,他的影长是多少?25.(12分)如图,在中,,,为边上的高,过点作,过点作,与交于点,与交于点,连结.(1)求证:四边形是矩形;(2)求四边形的周长.26.某产品成本为400元/件,由经验得知销售量与售价是成一次函数关系,当售价为800元/件时能卖1000件,当售价1000元/件时能卖600件,问售价多少时利润最大?最大利润是多少?

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据中位数和众数的定义,先将这组数据按顺序依次排列,取中间的那个数即为中位数,取出现次数最多的那个数即为众数;【详解】众数:1;中位数:1;故选:D.【点睛】本题主要考查众数和中位数的定义,熟练掌握相关的定义是求解本题的关键.2、B【解析】

根据利润=售价-进价,列出出不等式,求解即可.【详解】设成本为a元,由题意可得:则去括号得:整理得:故.故选B.【点睛】考查一元一次不等式的应用,熟练掌握利润=售价-进价是列不等式求解的关键.3、C【解析】设第三边长为x,由题意得:7-3<x<7+3,则4<x<10,故选C.【点睛】本题主要考查了三角形的三边关系:第三边的范围是:大于已知的两边的差,而小于两边的和.4、C【解析】

我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.【详解】解:依题意画出图形,设芦苇长AB=AB′=x尺,则水深AC=(x-2)尺,

因为B'E=16尺,所以B'C=8尺

在Rt△AB'C中,82+(x-2)2=x2,

解之得:x=17,

即芦苇长17尺.

故选C.【点睛】本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.5、C【解析】

根据普查的选择方法即可判断.【详解】A.了解一批电视机的使用寿命,适合采用抽样调查;B.了解全省学生的家庭1周内丢弃塑料袋的数量,适合采用抽样调查;C.了解某校八(2)班学生的身高,适合采用普查D.了解淮安市中学生的近视率,适合采用抽样调查;故选C.【点睛】此题主要考查统计调查的分式,解题的关键是熟知普查的适用范围.6、A【解析】分析:判断是否可以作为直角三角形的三边长,则判断两小边的平方和是否等于最长边的平方即可.详解:A.

是直角三角形,故此选项正确;B.

,不是直角三角形,故此选项错误;C.

不是直角三角形,故此选项错误;D.

不是直角三角形,故此选项错误。故选:A.点睛:考查勾股定理的逆定理:如果三角形两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.7、B【解析】

连接BD、ND,由勾股定理得可得BD=5,由三角形中位线定理可得EF=DN,当DN最长时,EF长度的最大,即当点N与点B重合时,DN最长,由此即可求得答案.【详解】连接BD、ND,由勾股定理得,BD==5∵点E、F分别为DM、MN的中点,∴EF=DN,当DN最长时,EF长度的最大,∴当点N与点B重合时,DN最长,∴EF长度的最大值为BD=2.5,故选B.【点睛】本题考查了勾股定理,三角形中位线定理,正确分析、熟练掌握和灵活运用相关知识是解题的关键.8、B【解析】

根据图象信息即可解决问题.【详解】解:A.小强在体育馆花了分钟锻炼,错误;B.小强从家跑步去体育场的速度是,正确;C.体育馆与文具店的距高是,错误;D.小强从文具店散步回家用了分钟,错误;故选:B.【点睛】本题考查了函数图象,观察函数图象,逐一分析四条说法的正误是解题的关键.9、C【解析】

由平行四边形的性质得出DC=AB=4,AD=BC=1,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.【详解】∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=1.∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=1+4=2.故选C.【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.10、C【解析】

根据一次函数的系数确定函数图象经过的象限,由此即可得出结论.【详解】∵一次函数y=﹣x+2中k=﹣1<0,b=2>0,∴该函数图象经过第一、二、四象限,不经过第三象限.故选C.【点睛】本题考查了一次函数图象与系数的关系.解答本类型题目时,根据函数系数的正负确定函数图象经过的象限是关键.11、A【解析】试题分析:∵直角三角形的两条直角边的长分别为5,12,

∴斜边为=13,

∵S△ABC=×5×12=×13h(h为斜边上的高),

∴h=.

故选A.12、D【解析】

根据正比例函数的性质,首先根据图象的象限来判断m﹣1的大小,进而计算m的范围.【详解】解:∵正比例函数y=(m﹣1)x的图象过第二、四象限,∴m﹣1<0,解得:m<1.故选:D.【点睛】本题主要考查正比例函数的性质,根据一次函数的一次项系数的正负确定图象所在的象限.二、填空题(每题4分,共24分)13、【解析】

连接AW,如图所示:根据旋转的性质得:AD=AB′,∠DAB′=60°,在Rt△ADW和Rt△AB′W中,,∴Rt△ADW≌Rt△AB′W(HL),∴∠B′AW=∠DAW=又AD=AB′=1,在RT△ADW中,tan∠DAW=,即tan30°=WD解得:WD=∴,则公共部分的面积为:,故答案为.14、【解析】

根据二次根式有意义的条件,被开方数大于或等于0,即可求m的取值范围.【详解】解:根据题意得:3-m≥0,解得.【点睛】主要考查了二次根式的意义和性质.二次根式中的被开方数必须是非负数,否则二次根式无意义.15、1【解析】

根据平行四边形对角线互相平分,对边相等可得CD=AB=5,AC=2CO,BD=2DO,再由△OCD的周长为16可得CO+DO=16﹣5=11,然后可得答案.【详解】解:∵四边形ABCD是平行四边形,∴CD=AB=5,AC=2CO,BD=2DO,∵△OCD的周长为16,∴CO+DO=16﹣5=11,∴AC+BD=2×11=1,故答案为1.【点睛】此题主要考查了平行四边形的性质,关键是掌握平行四边形对角线互相平分,对边相等.16、①②④【解析】

根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC-BE=CD-DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a-)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为①②④.【点睛】本题考查正方形的性质,全等三角形的判定与性质,熟悉掌握是解题关键.17、【解析】

原式通分并利用同分母分式的加法法则计算得到最简结果,将a与b的值代入计算即可求出值.【详解】原式=,当a=+1,b=-1时,原式=,故答案为:2【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18、553【解析】

直接利用二次根式的性质化简求出即可.【详解】(5)2=5;(-5)2故答案为:5.;5;3.【点睛】此题考查二次根式的化简,解题关键在于掌握二次根式的性质.三、解答题(共78分)19、(1)详见解析;(2)3+1.【解析】

(1)利用平行线等分线段定理证明即可.(2)根据勾股定理得BC=,易证△CBF∽△DBC,得BD=15,根据矩形的性质和直角三角形的性质得OG=,利用平行线等分线段定理得BE=3,由中位线的性质得EG=6,进而即可求解.【详解】(1)∵四边形ABCD是矩形,∴OC=OA,∵OB∥AE,∴BC=BE;(2)∵CF⊥BD,∴∠CFB=90°,在Rt△BCF中,BC=,∵四边形ABCD是矩形,∴∠BCD=90°=∠BFC,AC=BD,∵∠CBF=∠DBC,∴△CBF∽△DBC,∴,∴BD==15,OB=OD=,∴AC=BD=15,∵CF⊥BD,BD∥AE,∴CG⊥AE,∴∠AGC=90°,∵OC=OA,∴OG=AC=,∵OC=OA,OF∥AG,∴CF=FG,∴BC=BE=3,∴EG=2BF=6,∴四边形BOGE的周长=3+6++=3+1.【点睛】本题主要考查矩形的性质定理,平行线等分线段定理,直角三角形的性质定理,勾股定理,相似三角形的判定和性质定理,掌握上述定理,是解题的关键.20、证明见解析【解析】试题分析:通过全等三角形△ADE≌△CBF的对应角相等证得∠AED=∠CFB,则由平行线的判定证得结论.证明:∵平行四边形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.∵在△ADE与△CBF中,AD=BC,∠ADE=∠CBF,DE=BF,∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.∴AE∥CF.21、(1)y=﹣2x+1;(2)2.【解析】

(1)先设正比例函数解析式为y=mx,再把(1,4)点代入可得m的值,进而得到解析式;设一次函数解析式为y=kx+b,把(1,4)(2,0)代入可得关于k、b的方程组,然后再解出k、b的值,进而得到解析式;(2)利用一次函数解析式,求得OC的长,进而得出△ACO的面积.【详解】解:(1)设正比例函数解析式为y=mx,∵图象经过点A(1,4),∴4=m×1,即m=4,∴正比例函数解析式为y=4x;设一次函数解析式为y=kx+b,∵图象经过(1,4)(2,0),∴,解得:,∴一次函数解析式为y=﹣2x+1.(2)在y=﹣2x+1中,令x=0,则y=1,∴C(0,1),∴OC=1,∴S△AOC=×1×1=2.【点睛】此题主要考查了待定系数法求一次函数解析式以及三角形的面积,关键是用联立解析式的方法求出交点坐标.22、(1)一次函数的解析式为;(2)n的最大值是9.【解析】试题分析:(1)把x=2,y=-1代入函数y=kx+b,得出方程组,求出方程组的解即可;(2)把P点的坐标代入函数y=-2x+3,求出m的值,根据已知得出不等式组,求出不等式组的解集即可.试题解析:(1)依题意得:解得,∴一次函数的解析式为.(2)由(1)可得,.∵点P(m,n)是此函数图象上的一点,∴即,又∵,∴解得,.∴n的最大值是9.23、(1)(1,1);(2)D的坐标为(6,0);(3)D(2,2)或D(−6,−2)、D(10,6).【解析】

(1)直接套用中点坐标公式,即可得出中点坐标;(2)根据AC、BD的中点重合,可得出,,代入数据可得出点D的坐标;(3)分类讨论,①当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标;②当AB为该平行四边形的一条对角线时,根据AB中点与CD中点重合,可得出点D坐标.【详解】解:(1)AB中点坐标为(,)即(1,1);(2)根据平行四边形的性质:对角线互相平分,可知AC、BD的中点重合,由中点坐标公式可得:,,代入数据得:,,解得:xD=6,yD=0,所以点D的坐标为(6,0);(3)①当AB为该平行四边形一边时,则CD∥AB,对角线为AD、BC或AC、BD;故可得:,或,,故可得yC−yD=yA−yB=2或yD−yC=yA−yB=−2,∵yC=0,∴yD=2或−2,代入到y=x+1中,可得D(2,2)或D(−6,−2).当AB为该平行四边形的一条对角线时,则CD为另一条对角线;,,∴yC+yD=yA+yB=2+4,∵yC=0,∴y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论