版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、选择题1.如图,为半圆的直径,弦,,点、分别为和上的动点,则的最小值为()A. B. C.3 D.2.如图,在⊙O中,直径AB=10,弦DE⊥AB于点C,若OC:OB=3:5,连接DO,则DE的长为()A.3 B.4 C.6 D.83.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=30°,则∠C的度数是()A.70° B.45° C.30° D.20°4.点P到圆上各点的最大距离为10cm,最小距离为6cm,则此圆的半径为()A.8cm B.5cm或3cm C.8cm或2cm D.3cm5.已知的直径,是的弦,,垂足为,且,则的长为()A. B. C.或 D.或6.下列事件属于确定事件的为()A.氧化物中一定含有氧元素 B.弦相等,则所对的圆周角也相等C.戴了口罩一定不会感染新冠肺炎 D.物体不受任何力的时候保持静止状态7.如图,的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将绕点B顺时针旋转到的位置,且点、仍落在格点上,则线段扫过的图形的面积是()平方单位(结果保留)A. B. C. D.8.如图,不等边内接于,下列结论不成立的是()A. B.C. D.9.已知⊙的直径为6,圆心到直线的距离为3,则能表示直线与⊙的位置关系的图是()A. B.C. D.10.如图,⊙O的半径为2,四边形ADBC为⊙O的内接四边形,AB=AC,∠D=112.5°,则弦BC的长为()A. B.2 C. D.11.如图,⊙O是四边形ABCD的内切圆,连接OA、OB、OC、OD.若∠AOB=110°,则∠COD的度数是()A.60° B.70° C.80° D.45°12.如图,C、D是以为直径的上的两个动点(点C、D不与A、B重合),在运动过程中弦始终保持长度不变,M是弦的中点,过点C作于点P.若,,,则x的最大值是()A.4 B. C.2.5 D.二、填空题13.下列说法:①弦是圆上任意两点之间的部分;②平分弦的直径垂直于弦;③垂直于弦的直线平分弦所对的两条弧;④直径是最长的弦;⑤弦的垂直平分线经过圆心;⑥直径是圆的对称轴.其中正确的是________.14.如图,四边形是的内接四边形,对角线是的直径,,,则的半径长为_______.15.如图,已知是的直径,点,在上,,,则的半径为_____.16.如图,已知是⊙的直径,点,在⊙上,,是弧的中点,则的度数为___________.17.在矩形中,,,若点P是矩形上一动点,要使得,则的长为__________.18.如图,是正方形的外接圆,点是劣弧上的任意一点,连接,作于点,连接则当点从点出发按顺时针方向运动到点时,长的取值范围为________________.19.如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E,若∠BOE=54°,则∠C=______.20.在△ABC中,已知∠ACB=90°,BC=3,AC=4,以点C为圆心,2.5为半径作圆,那么直线AB与这个圆的位置关系分别是_________.三、解答题21.如图,已知四边形ABCD是矩形,AC为对角线.(1)把△ABC绕点A顺时针旋转一定角度得到△AEF,点B的对应点为E,点C的对应点F在CD的延长线上,请你在图中作出△AEF.(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,求证:B,D,E三点共线.22.如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).(1)以点C为中心,把△ABC逆时针旋转90°,画出旋转后的图形△A′B′C;(2)在(1)中的条件下,①点A经过的路径的长为(结果保留π);②写出点B′的坐标为.23.如图,已知是的一条弦,是的直径且于点.(1)若,求的长;(2)求证:.24.如图,已知圆内接四边形ABDC中,∠BAC=60°,AB=AC,AD为它的对角线.求证:AD=BD+CD.25.如图,在的网格中有一个圆,请仅用无刻度直尺作图(保留画图痕迹).(1)在图1中,圆过格点,,请作出圆心;(2)在图2中,⊙的两条弦,请作一个圆周角.26.如图,已知点在射线上.根据下列方法画图(用尺规作图).①以为圆心,长为半径画圆,交于点,交射线的反向延长线于点,连接;②以为边,在的内部,画;③连接,交于点;④过点作的切线,交于点.依题意补全图形;求证;若,求的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】作B点关于直径AC的对称点B′,过B′点作B′E⊥AB于E,交AC于F,如图,利用两点之间线段最短和垂线段最短可判断此时FB+FE的值最小,再判断△ABB′为等边三角形,然后计算出B′E的长即可.【详解】解:作B点关于直径AC的对称点B′,过B′点作B′E⊥AB于E,交AC于F,如图,则FB=FB′,∴FB+FE=FB′+FE=B′E,此时FB+FE的值最小,∵∠BAC=30°,∴∠B′AC=30°,∴∠BAB′=60°,∵AB=AB′,∴△ABB′为等边三角形,∵B′E⊥AB,∴AE=BE=,∴B′E=AE=,即BF+EF的最小值为.故选:B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的性质.2.D解析:D【分析】根据题意可求出OC长度,再根据勾股定理求出CD长度,最后根据垂径定理即可得到DE长度.【详解】∵AB=10,∴OB=5OC:OB=3:5,∴OC=3,在中,∵DE⊥AB,∴DE=2CD=8,故选:D.【点睛】本题考查垂径定理、勾股定理.掌握垂径定理“垂直于弦的直径平分这条弦”是解题的关键.3.C解析:C【分析】由BC是⊙O的切线,OB是⊙O的半径,得到∠OBC=90°,根据等腰三角形的性质得到∠A=∠ABO=30°,由外角的性质得到∠BOC=60°,即可求得∠C=30°.【详解】∵BC是⊙O的切线,OB是⊙O的半径,∴∠OBC=90°,∵OA=OB,∴∠A=∠ABO=30°,∴∠BOC=60°,∴∠C=30°.故选:C.【点睛】本题考查了切线的性质,等腰三角形的性质,三角形的外角性质,解题的关键是灵活运用所学知识解决问题.4.C解析:C【分析】分析题意,本题应分两种情况讨论:(1)点P在圆内;(2)点P在圆外;根据“一个点到圆的最大距离和最短距离都在过圆心的直线上”可知,点P到圆的最大距离与最小距离的和或差即是圆的直径,进而即可得出半径的长.【详解】当点P在圆内时,圆的直径是10+6=16cm,所以半径是8cm.当点P在圆外时,圆的直径是10-6=4cm,所以半径是2cm.故选C.【点睛】本题考查了圆的有关性质,熟知一个点到圆的最大距离和最短距离都在过圆心的直线上是解题的关键.5.C解析:C【分析】连结,由,根据垂径定理可以得到,结合勾股定理可以得到.在分类讨论,如图,当和时,再结合勾股定理即可求出AC.【详解】连结,∵,∴,在中,,∴,当如图时,,在中,,当如图时,,在中,故选C.【点睛】本题考查垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”.分类讨论思想也是解决本题的关键.6.A解析:A【分析】根据确定事件的概念,可知需找出必然事件或不可能事件即可.【详解】A、氧化物是含有两种元素其中一种是氧元素的化合物,必然事件;B、在同圆或等圆中,弦相等所对的圆周角相等或互补,不确定事件;C、戴了口罩一定不会感染新冠肺炎,不确定事件;D、物体不受任何力的时候保持静止状态或匀速运动,不确定事件.故选A.【点睛】本题考查事件的划分,必然事件和不可能事件统称为确定事件,确定事件中,必然出现的事情称为必然事件;不可能出现的事情称为不可能事件.7.B解析:B【分析】在Rt△ABC中,由勾股定理求AB,观察图形可知,线段AB扫过的图形为扇形,旋转角为90°,根据扇形面积公式求解.【详解】解:在Rt△ABC中,由勾股定理,得AB=,由图形可知,线段AB扫过的图形为扇形ABA′,旋转角为90°,∴线段AB扫过的图形面积=.故选:B.【点睛】本题考查了旋转的性质,扇形面积公式的运用,关键是理解题意,明确线段AB扫过的图形是90°的扇形,难度一般.8.B解析:B【分析】利用OB=OC可对A选项的结论进行判断;由于AB≠BC,则∠BOC≠∠AOB,而∠BOC=180°-2∠1,∠AOB=180°-2∠4,则∠1≠∠4,于是可对B选项的结论进行判断;根据圆周角定理可对C选项的结论进行判断;利用∠OCA=∠3,∠1=∠2可对D选项的结论进行判断.【详解】解:∵OB=OC,∴∠1=∠2,所以A选项的结论成立;∵OA=OB,∴∠4=∠OBA,∴∠AOB=180°-∠4-∠OBA=180°-2∠4,∵△ABC为不等边三角形,∴AB≠BC,∴∠BOC≠∠AOB,而∠BOC=180°-∠1-∠2=180°-2∠1,∴∠1≠∠4,所以B选项的结论不成立;∵∠AOB与∠ACB都对弧AB,∴∠AOB=2∠ACB,所以C选项的结论成立;∵OA=OC,∴∠OCA=∠3,∴∠ACB=∠1+∠OCA=∠2+∠3,所以D选项的结论成立.故选:B.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和等腰三角形的性质.9.C解析:C【分析】因为⊙O的直径为6,所以圆的半径是3,圆心O到直线l的距离为3即d=3,所以d=r,所以直线l与⊙O的位置关系是相切.【详解】解:∵⊙O的直径为6,∴r=3,∵圆心O到直线l的距离为3即d=3,∴d=r∴直线l与⊙O的位置关系是相切.故选:C.【点睛】本题考查直线与圆的位置关系,若圆的半径为r,圆心到直线的距离为d,d>r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交.10.C解析:C【分析】如图:连接OB、OC,先根据圆的内接四边形对角互补得到∠C=67.5°,再利用等腰三角形的性质和三角形内角和计算出∠BAC=45°,再根据圆周角定理可得∠BOC=90°,最后根据勾股定理求解即可.【详解】解:∵四边形ADBC为⊙O的内接四边形,∠D=112.5°∴∠C=180°-∠D=180°-112.5°=67.5°∵AC=AB∴∠BAC=180°-2∠C=45°∴∠BOC=90°∴BC=.故答案为C.【点睛】本题考查了圆内接四边形的性质、等腰直角三角形的性质和圆周角定理,掌握圆内接四边形的对角互补是解答本题的突破口.11.B解析:B【分析】设四个切点分别为E、F、G、H,分别连接切点和圆心,利用切线性质和HL定理可以得到4对全等三角形,进而可得∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,根据8个角之和为360°即可求解.【详解】解:设四个切点分别为E、F、G、H,分别连接切点和圆心,则OE⊥AB,OF⊥BC,OG⊥CD,OH⊥AD,OE=OF=OG=OH,在Rt△BEO和△BFO中,,∴Rt△BEO≌△BFO(HL)∴∠1=∠2,同理可得:∠3=∠4,∠5=∠6,∠7=∠8,∴∠1+∠8=∠2+∠7,∠4+∠5=∠3+∠6,∵∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=360°,∴∠1+∠8+∠4+∠5=180°,即∠AOB+∠COD=180°,∵∠AOB=110°,∴∠COD=180°﹣∠AOB=180°﹣110°=70°,故选:B.【点睛】本题考查了圆的切线性质、全等三角形的判定与性质,利用圆的的切线性质,添加辅助线构造全等三角形是解答的关键.12.C解析:C【分析】如图:延长交于,连接,易证,所以当为直径时,的值最大.【详解】解:如图:延长交于,连接.,,,,当为直径时,的值最大,最大值为.故选:.【点睛】本题考查是圆的综合题,垂径定理,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题.二、填空题13.④⑤【分析】根据弦的定义垂径定理圆的对称性即可求解【详解】解:①连接圆上两点间的线段才是弦故原说法错误;②平分弦(不是直径)的直径垂直于弦故原说法错误;③垂直于弦的直径平分弦所对的两条弧故原说法错误解析:④⑤.【分析】根据弦的定义、垂径定理、圆的对称性即可求解.【详解】解:①、连接圆上两点间的线段才是弦,故原说法错误;②平分弦(不是直径)的直径垂直于弦,故原说法错误;③垂直于弦的直径平分弦所对的两条弧,故原说法错误;④直径是最长的弦,正确;⑤弦的垂直平分线经过圆心,正确;⑥直径所在的直线是圆的对称轴,故原说法错误;所以,正确的结论有④⑤.故答案为:④⑤.【点睛】本题考查了圆的对称性,垂径定理的应用,主要考查学生的理解能力和辨析能力,熟练掌握垂径定理是解决问题的关键.14.【分析】先根据圆周角定理可得再根据等腰直角三角形的判定与性质勾股定理可得由此即可得【详解】是的直径是等腰直角三角形则的半径长为故答案为:【点睛】本题考查了圆周角定理等腰直角三角形的判定与性质勾股定理解析:【分析】先根据圆周角定理可得,再根据等腰直角三角形的判定与性质、勾股定理可得,由此即可得.【详解】是的直径,,,,是等腰直角三角形,,,则的半径长为,故答案为:.【点睛】本题考查了圆周角定理、等腰直角三角形的判定与性质、勾股定理,熟练掌握圆周角定理是解题关键.15.2【分析】根据圆周角定理得出∠A=∠CDB∠ACB=90°根据含30°角的直角三角形的性质得出AB=2BC求出AB再求出半径即可【详解】解:∵∴∠A=∠CDB∵∠CDB=30°∴∠A=30°∵AB为解析:2【分析】根据圆周角定理得出∠A=∠CDB,∠ACB=90°,根据含30°角的直角三角形的性质得出AB=2BC,求出AB,再求出半径即可.【详解】解:∵∴∠A=∠CDB,∵∠CDB=30°,∴∠A=30°,∵AB为⊙O的直径,∴∠ACB=90°,∵BC=2,∴AB=2BC=4,∴⊙O的半径是,故答案为:2.【点睛】本题考查了圆周角定理,含30°角的直角三角形的性质等知识点,能根据圆周角定理得出∠A=∠CDB和∠ACB=90°是解此题的关键.16.29°【分析】先由是弧的中点可得再根据圆周角定理可得结果【详解】解:连接OC∵是弧的中点∴∴∠BOC=∠AOB=58°∴∠BDC==29°故答案为29°【点睛】本题考查了圆周角定理掌握圆周角定理是解解析:29°【分析】先由是弧的中点,可得,再根据圆周角定理可得结果.【详解】解:连接OC,∵是弧的中点,∴.∴∠BOC=∠AOB=58°∴∠BDC==29°.故答案为29°.【点睛】本题考查了圆周角定理,掌握圆周角定理是解题的关键.17.或4或8【分析】取CD中点P1连接AP1BP1由勾股定理可求AP1=BP1=4即可证△AP1B是等边三角形可得∠AP1B=60°过点A点P1点B作圆与ADBC各有一个交点即这样的P点一共3个再运用勾解析:或4或8.【分析】取CD中点P1,连接AP1,BP1,由勾股定理可求AP1=BP1=4,即可证△AP1B是等边三角形,可得∠AP1B=60°,过点A,点P1,点B作圆与AD,BC各有一个交点,即这样的P点一共3个.再运用勾股定理求解即可.【详解】解:如图,取CD中点P1,连接AP1,BP1,如图1,∵四边形ABCD是矩形∴AB=CD=4,AD=BC=6,∠D=∠C=90°∵点P1是CD中点∴CP=DP1=2∴AP1==4,BP1==4∴AP1=P1B=AB∴△APB是等边三角形∴∠AP1B=60°,过点A,点P1,点B作圆与AD,BC的相交,∴这样的P点一共有3个当点P2在AD上时,如图2,∵四边形ABCD是矩形,∴∵∴即在中,∴∴;当点P3在BC上时,如图3,∵四边形ABCD是矩形,∴∠B=90°∵∠∴∠∴在中,∴综上所述,AP的长为:或4或8.故答案为:或4或8.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.18.【分析】首先根据题意可知当点与点重合时最长的最大值为;再证明点的运动轨迹为以为直径的通过添加辅助线连接交于点连接由线段公理可知当点与点重合时最短的最小值为即可得解【详解】解:∵由题意可知当点与点重合解析:【分析】首先根据题意可知,当点与点重合时最长,的最大值为;再证明点的运动轨迹为以为直径的,通过添加辅助线连接交于点,连接,由线段公理可知,当点与点重合时最短,的最小值为.即可得解.【详解】解:∵由题意可知,当点与点重合时最长∴此时,即的最大值为∵∴∴点的运动轨迹为以为直径的,连接交于点,连接,如图:∵∴∴在中,∴∴由两点之间,线段最短可知,当点与点重合时最短∴的最小值为∴.【点睛】本题考查了正多边形和圆的动点问题、的圆周角所对的弦为直径、勾股定理、线段公理等知识点,解题的关键是确定取最大值和最小值时点的位置,属于中考常考题型,难度中等.19.18°【分析】连接OD利用半径相等和等腰三角形的性质以及三角形的外角性质得到∠BOE=3∠C即可解决问题【详解】连接OD∵CD=OA=OD∴∠C=∠DOC∴∠ODE=∠C+∠DOC=2∠C∵OD=O解析:18°.【分析】连接OD,利用半径相等和等腰三角形的性质以及三角形的外角性质得到∠BOE=3∠C,即可解决问题.【详解】连接OD,∵CD=OA=OD,∴∠C=∠DOC,∴∠ODE=∠C+∠DOC=2∠C,∵OD=OE,∴∠E=∠EDO=2∠C,∴∠EOB=∠C+∠E=3∠C=54°,∴∠C=18°,故答案为:18°.【点睛】本题考查了圆的认识及等腰三角形的性质及三角形的外角性质,熟练掌握等腰三角形的性质和三角形外角性质是关键.20.相交【分析】根据勾股定理作于点则的长即为圆心到的距离利用等积法求出的长与半径比较大小再作判断【详解】解:如图作于点∵的两条直角边斜边即半径是直线与圆相交【点睛】此题考查的是勾股定理直线与圆的位置关系解析:相交【分析】根据勾股定理,.作于点,则的长即为圆心到的距离.利用等积法求出的长,与半径比较大小,再作判断.【详解】解:如图,作于点.∵的两条直角边,,斜边.,即,.半径是,直线与圆相交.【点睛】此题考查的是勾股定理,直线与圆的位置关系,熟悉相关性质是解题的关键.三、解答题21.(1)作图见解析;(2)证明见解析.【分析】(1)延长CD,以A为圆心AC长为半径画弧交CD延长线即为F.以F为圆心BC长为半径画弧,以A为圆心AB长为半径画弧,两段弧交于点E.最后连接AE、EF、AF即可.(2)连接DE,BE.由题意可知∠AEF=∠ADF=90°,即A,F,D,E四点共圆,即可知道∠AED+∠AFD=180°.再由AF=AC结合题意可进一步证明∠ABD=∠AFD.最后由AB=AE可知∠ABE=∠AEB,即推出∠AFD=∠AEB,即可证明∠DEA+∠AEB=180°.【详解】(1)如图,△AEF即为所求.(2)如图,连接DE,BE.∵∠AEF=∠ADF=90°,∴A,F,D,E四点共圆,∴∠AED+∠AFD=180°.∵AF=AC,∴∠ACD=∠AFD.∵∠ACB=∠AFE,∠ACB+∠ACD=90°,∠AFE+∠FAE=90°,∴∠ACD=∠EAF=∠AFD.∵∠ABD=∠EAF,∴∠ABD=∠AFD.∵AB=AE,∴∠ABE=∠AEB,∴∠AFD=∠AEB,∴∠DEA+∠AEB=180°,∴B,E,D共线.【点睛】本题考查作图-旋转变换、矩形和等腰三角形的性质以及圆的确定条件和圆的性质.需理解题意,灵活运用所学知识解决问题.22.(1)见解析;(2)①;②(﹣1,3).【分析】(1)根据旋转的定义作出点A、B绕点C逆时针旋转90°得到的对应点,再顺次连接即可;(2)①根据弧长公式列式计算即可;②根据(1)中所作图形可得点的坐标;【详解】(1)如图所示,△即为所求;(2)①∵AC=,∠ACA′=90°,∴点A经过的路径的长为,故答案为:;②由图知点的坐标为(﹣1,3),故答案为:(﹣1,3).【点睛】本题主要考查作图-旋转变换,解题的关键是根据旋转角度、旋转方向、旋转中心作出对应点;23.(1);(2)见解析【分析】(1)由DE⊥AB,得∠OCA=90°,OC=3,OA=5,通过勾股定理即可求出AC;由DE是⊙O的直径,所以DE平分AB,得到AB=2AC,即可得到AB;(2)由OA=OE,得∠EAO=∠E,而直径DE⊥AB,则,所以∠E=∠BAD,由此得到∠EAO=∠BAD.【详解】(1)∵DE⊥AB∴∠OCA=90°,则OC2+AC2=OA2又∵OC=3,OA=5,∴AC=4,∵DE是⊙O的直径,且DE⊥AB,∴AB=2AC=8(2)证明∵EO=AO,∴∠E=∠EAO又∵DE是⊙O的直径,且DE⊥AB,∴,∴∠E=∠BAD∴∠EAO=∠BA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 技术创新在情绪管理中的应用
- 科技团队的创新力培养与策略分析
- 二零二五年度高新技术产业园区场地使用权转让合同3篇
- 湘西2025年湖南湘西州保靖县事业单位引进急需紧缺人才16人笔试历年参考题库附带答案详解
- 湖北2025年湖北省水利水电科学研究院招聘14人笔试历年参考题库附带答案详解
- 2025年度页岩砖绿色建筑材料采购与供应链管理合同4篇
- 二零二五年度成立体育产业公司出资合同标准4篇
- 【语文】《邓稼先》课件++2024-2025学年统编版语文七年级下册
- 2025年牛津译林版九年级地理下册月考试卷
- 2025合同模板建筑安装工程拆迁房屋合同范本
- 2024-2025学年北京石景山区九年级初三(上)期末语文试卷(含答案)
- 第一章 整式的乘除 单元测试(含答案) 2024-2025学年北师大版数学七年级下册
- 春节联欢晚会节目单课件模板
- 中国高血压防治指南(2024年修订版)
- 糖尿病眼病患者血糖管理
- 抖音音乐推广代运营合同样本
- 《春酒》琦君完整版
- 教育促进会会长总结发言稿
- 北师大版(2024新版)七年级上册数学第四章《基本平面图形》测试卷(含答案解析)
- 心理调适教案调整心态积极应对挑战
- 小学数学6年级应用题100道附答案(完整版)
评论
0/150
提交评论