(专题精选)初中数学锐角三角函数的全集汇编及解析_第1页
(专题精选)初中数学锐角三角函数的全集汇编及解析_第2页
(专题精选)初中数学锐角三角函数的全集汇编及解析_第3页
(专题精选)初中数学锐角三角函数的全集汇编及解析_第4页
(专题精选)初中数学锐角三角函数的全集汇编及解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(专题精选)初中数学锐角三角函数的全集汇编及解析一、选择题1.在一次数学活动中,嘉淇利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度.如图,嘉淇与假山的水平距离为,他的眼睛距地面的高度为,嘉淇的视线经过量角器零刻度线和假山的最高点,此时,铅垂线经过量角器的刻度线,则假山的高度为()A. B. C. D.【答案】A【解析】【分析】根据已知得出AK=BD=6m,再利用tan30°=,进而得出CD的长.【详解】解:如图,过点A作AKCD于点K∵BD=6米,李明的眼睛高AB=1.6米,∠AOE=60°,∴DB=AK,AB=KD=1.6米,∠CAK=30°,

∴tan30°=,解得:CK=2即CD=CK+DK=2+1.6=(2+1.6)m.故选:A.【点睛】本题考查的是解直角三角形的应用,根据题意构造直角三角形,解答关键是应用锐角三角函数定义.2.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM,若矩形纸片的宽AB=4,则折痕BM的长为()A. B. C.8 D.【答案】A【解析】【分析】根据折叠性质可得BE=AB,A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,可得∠EA′B=30°,根据直角三角形两锐角互余可得∠EBA′=60°,进而可得∠ABM=30°,在Rt△ABM中,利用∠ABM的余弦求出BM的长即可.【详解】∵对折矩形纸片ABCD,使AD与BC重合,AB=4,∴BE=AB=2,∠BEF=90°,∵把纸片展平,再一次折叠纸片,使点A落在EF上的点A’处,并使折痕经过点B,∴A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,∴∠EA′B=30°,∴∠EBA′=60°,∴∠ABM=30°,∴在Rt△ABM中,AB=BMcos∠ABM,即4=BMcos30°,解得:BM=,故选A.【点睛】本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻边;余切是角的邻边比对边;熟练掌握相关知识是解题关键.3.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A. B. C. D.【答案】B【解析】【分析】先根据翻折变换的性质得到,再根据等腰三角形的性质及三角形外角的性质可得到,设,,则,再根据勾股定理即可求解.【详解】解:∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2﹣x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2﹣x)2,解得:,.故选:B.【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.4.如图,点从点出发沿方向运动,点从点出发沿方向运动,同时出发且速度相同,(长度不变,在上方,在左边),当点到达点时,点停止运动.在整个运动过程中,图中阴影部分面积的大小变化情况是()A.一直减小 B.一直不变 C.先减小后增大 D.先增大后减小【答案】B【解析】【分析】连接GE,过点E作EM⊥BC于M,过点G作GN⊥AB于N,设AE=BG=x,然后利用锐角三角函数求出GN和EM,再根据S阴影=S△GDE+S△EGF即可求出结论.【详解】解:连接GE,过点E作EM⊥BC于M,过点G作GN⊥AB于N设AE=BG=x,则BE=AB-AE=AB-x∴GN=BG·sinB=x·sinB,EM=BE·sinB=(AB-x)·sinB∴S阴影=S△GDE+S△EGF=DE·GN+GF·EM=DE·(x·sinB)+DE·[(AB-x)·sinB]=DE·[x·sinB+(AB-x)·sinB]=DE·AB·sinB∵DE、AB和∠B都为定值∴S阴影也为定值故选B.【点睛】此题考查的是锐角三角函数和求阴影部分的面积,掌握利用锐角三角函数解直角三角形和三角形的面积公式是解决此题的关键.5.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+ B.2 C.3+ D.3【答案】A【解析】【分析】【详解】设AC=x,在Rt△ABC中,∠ABC=30°,即可得AB=2x,BC=x,所以BD=BA=2x,即可得CD=x+2x=(+2)x,在Rt△ACD中,tan∠DAC=,故选A.6.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,则tan∠DEC的值是()A.1 B. C. D.【答案】C【解析】【分析】先根据题意过点C作CF⊥BD与点F可求得△AEB≌△CFD(AAS),得到AE=CF=1,EF=,即可求出答案【详解】过点C作CF⊥BD与点F.∵∠BAE=30°,∴∠DBC=30°,∵BC=2,∴CF=1,BF=,易证△AEB≌△CFD(AAS)∴AE=CF=1,∵∠BAE=∠DBC=30°,∴BE=AE=,∴EF=BF﹣BE=﹣=,在Rt△CFE中,tan∠DEC=,故选C.【点睛】此题考查了含30°的直角三角形,三角形全等的性质,解题关键是证明所进行的全等7.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tanD的值为()A. B. C. D.【答案】D【解析】【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【详解】设AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC=AC=m,∴BD=AB=2m,DC=2m+m,∴tan∠ADC===2﹣.故选:D.【点睛】本题考查解直角三角形,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图所示,在△ABC中,∠C=90°,AB=8,CD是AB边上的中线,作CD的中垂线与CD交于点E,与BC交于点F.若CF=x,tanA=y,则x与y之间满足()A. B. C. D.【答案】A【解析】【分析】由直角三角形斜边上的中线性质得出CD=AB=AD=4,由等腰三角形的性质得出∠A=∠ACD,得出tan∠ACD==tanA=y,证明△CEG∽△FEC,得出,得出y=,求出y2=,得出=FE2,再由勾股定理得出FE2=CF2﹣CE2=x2﹣4,即可得出答案.【详解】解:如图所示:∵在△ABC中,∠C=90°,AB=8,CD是AB边上的中线,∴CD=AB=AD=4,∴∠A=∠ACD,∵EF垂直平分CD,∴CE=CD=2,∠CEF=∠CEG=90°,∴tan∠ACD==tanA=y,∵∠ACD+∠FCE=∠CFE+∠FCE=90°,∴∠ACD=∠FCE,∴△CEG∽△FEC,∴=,∴y=,∴y2=,∴=FE2,∵FE2=CF2﹣CE2=x2﹣4,∴=x2﹣4,∴+4=x2,故选:A.【点睛】本题考查了解直角三角形、直角三角形斜边上的中线性质、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明三角形相似是解题的关键.9.如图,在中,,,,,垂足为,的平分线交于点,则的长为()A. B. C. D.【答案】C【解析】【分析】在Rt△ADC中,利用等腰直角三角形的性质可求出AD的长度,在Rt△ADB中,由AD的长度及∠ABD的度数可求出BD的长度,在Rt△EBD中,由BD的长度及∠EBD的度数可求出DE的长度,再利用AE=AD−DE即可求出AE的长度.【详解】∵AD⊥BC∴∠ADC=∠ADB=在Rt△ADC中,AC=4,∠C=∴AD=CD=在Rt△ADB中,AD=,∠ABD=∴BD=AD=.∵BE平分∠ABC,∴∠EBD=.在Rt△EBD中,BD=,∠EBD=∴DE=BD=∴AE=AD−DE=-=故选:C【点睛】本题考查了等腰直角三角形的性质,以及利用特殊角三角函数解直角三角形.10.如图,已知△A1B1C1的顶点C1与平面直角坐标系的原点O重合,顶点A1、B1分别位于x轴与y轴上,且C1A1=1,∠C1A1B1=60°,将△A1B1C1沿着x轴做翻转运动,依次可得到△A2B2C2,△A3B3C3等等,则C2019的坐标为()A.(2018+672,0) B.(2019+673,0)C.(+672,) D.(2020+674,0)【答案】B【解析】【分析】根据题意可知三角形在轴上的位置每三次为一个循环,又因为,那么相当于第一个循环体的即可算出.【详解】由题意知,,,则,,,结合图形可知,三角形在轴上的位置每三次为一个循环,,,,故选.【点睛】考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.11.把三边的长度都扩大为原来的倍,则锐角的余弦值()A.扩大为原来的倍 B.缩小为原来的 C.扩大为原来的倍 D.不变【答案】D【解析】【分析】根据相似三角形的性质解答.【详解】三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,

∴锐角A的大小不变,

∴锐角A的余弦值不变,

故选:D.【点睛】此题考查相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.12.定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角的正对记作,即底边:腰.如图,在中,,.则()A. B. C. D.【答案】C【解析】【分析】证明△ABC是等腰直角三角形即可解决问题.【详解】解:∵AB=AC,∴∠B=∠C,

∵∠A=2∠B,

∴∠B=∠C=45°,∠A=90°,

∴在Rt△ABC中,BC==AC,∴sin∠B•sadA=,故选:C.【点睛】本题考查解直角三角形,等腰直角三角形的判定和性质三角函数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.13.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()A.﹣ B.﹣2 C.﹣3 D.﹣4【答案】B【解析】【分析】根据已知求出B(﹣),由△AOB为等边三角形,得到=tan60°×(﹣),即可求解;【详解】解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,B(﹣),∵△AOB为等边三角形,∴=tan60°×(﹣),∴b=﹣2;故选B.【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.14.如图,在平面直角坐标系中,的顶点在第一象限,点在轴的正半轴上,,,将绕点逆时针旋转,点的对应点的坐标是()A. B. C. D.【答案】D【解析】【分析】过点作x轴的垂线,垂足为M,通过条件求出,MO的长即可得到的坐标.【详解】解:过点作x轴的垂线,垂足为M,∵,,∴,,∴,在直角△中,,,∴,,∴OM=2+1=3,∴的坐标为.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.15.如图,△ABC的顶点是正方形网格的格点,则()A. B. C. D.【答案】B【解析】【分析】构造全等三角形,证明△ABD是等腰直角三角形,进行作答.【详解】过A作AE⊥BE,连接BD,过D作DF⊥BF于F.∵AE=BF,∠AEB=∠DFB,BE=DF,∴△AEB≌△BFD,∴AB=DB.∠ABD=90°,∴△ABD是等腰直角三角形,∴cos∠DAB=.答案选B.【点睛】本题考查了不规则图形求余弦函数的方法,熟练掌握不规则图形求余弦函数的方法是本题解题关键.16.如图,在中,,则的长为()A. B.C. D.【答案】D【解析】【分析】先利用相似三角形的相似比证明点D是AB的中点,再解直角三角形求得AB,最后利用直角三角形斜边中线性质求出DF.【详解】解:∵,∴,∵,∴点D是AB的中点,∵,,∴∠B=30°,∴,∴DF=3,故选:D.【点睛】此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.17.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,且BE∥AC,CE∥DB,连接DE,则tan∠EDC=()A. B. C. D.【答案】B【解析】【分析】过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.根据邻边相等的平行四边形是菱形即可判断四边形OBEC是菱形,则OE与BC垂直平分,易得EF=x,CF=x.再由锐角三角函数定义作答即可.【详解】解:∵矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,∴BC=AD,设AB=2x,则BC=x.如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.∵BE∥AC,CE∥BD,∴四边形BOCE是平行四边形,∵四边形ABCD是矩形,∴OB=OC,∴四边形BOCE是菱形.∴OE与BC垂直平分,∴EF=AD=x,OE∥AB,∴四边形AOEB是平行四边形,∴OE=AB=2x,∴CF=OE=x.∴tan∠EDC===.故选:B.【点睛】本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论