版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-.z.数列通项与求和一、数列的通项方法总结:对于数列的通项的变形,除了常见的求通项的方法,还有一些是需要找规律的,算周期或者根据图形进行推理。其余形式我们一般遵循以下几个原则:①对于同时出现,,的式子,首先要对等式进行化简。常用的化简方法是因式分解,或者同除一个式子,同加,同减,取倒数等,如果出现分式,将分式化简成整式;②利用关系消掉(或者),得到关于和的等式,然后用传统的求通项方法求出通项;③根据问题在等式中构造相应的形式,使其变为我们熟悉的等差数列或等比数列;④对于出现或(或更高次时)应考虑因式分解,最常见的为二次函数十字相乘法,提取公因式法;遇到时还会两边同除.规律性形式求通项1-1.数列{an}满足an+1=,若a1=,则a2016的值是()A. B. C. D.1-2.分形几何学是美籍法国数学家伯努瓦•B•曼德尔布罗特(BenoitB.Mandelbrot)在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路.下图按照的分形规律生长成一个树形图,则第12行的实心圆点的个数是()A.55 B.89 C.144 D.2331-3.如图所示的三角形数阵叫"莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n行有n个数且两端的数均为(n≥2),每个数是它下一行左右相邻两数的和,如,,,…,则第10行第4个数(从左往右数)为()A. B. C. D.2.出现,,的式子1-4.正项数列{an}的前项和{an}满足:(1)求数列{an}的通项公式an;(2)令,数列{bn}的前项和为.证明:对于任意的,都有.1-5.设数列的前项和为.已知,,.(1)求的值;(2)求数列的通项公式.1-6.已知首项都是1的两个数列,满足.令,求数列的通项公式;若,求数列的前项和.牛刀小试:1.已知数列{}的前n项和为Sn,=1,且,数列{}满足,,其前9项和为63.(1)求数列数列{}和{}的通项公式;2.已知数列的前n项和为,且(1)求的通项公式;设恰有4个元素,**数的取值*围.3.需构造的(证明题)1-7.已知数列的前项和为,且满足,.(1)求证:是等差数列;(2)求表达式;1-8.设数列{an}的前n项和为Sn,且首项a1≠3,an+1=Sn+3n(n∈N*).(1)求证:{Sn﹣3n}是等比数列;(2)若{an}为递增数列,求a1的取值*围.牛刀小试1.已知数列{}中,,.(1)证明:数列是等比数列;(2)求数列的前n项和为.2.数列{}中,1,.(1)求证:数列{}是等差数列;二、数列求和与放缩数列求和的考察无外乎错位相减、裂项相消或者是分组求和等,但有一些通项公式需要化简才可以应用传统的方法进行求和。对于通项公式是分式形式的一般我们尝试把"大”分式分解成次数(分母的次数)相等的"小”分式,然后应用裂项相消的方法进项求和。放缩,怎么去放缩是重点,一般我们不可求和的放缩为可求和的,分式形式,分母是主要化简对象。2-1.数列满足.(1)设,求数列的通项公式.(2)设,数列的前n项和为,不等式对一切成立,求m的*围.2-2.设数列满足且(1)求的通项公式;(2)设2-32-42-5牛刀小试:1.已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.求数列{an}的通项公式;令bn=(-1)n-1eq\f(4n,anan+1),求数列{bn}的前n项和Tn.三、数列与不等式问题在这类题目中一般是要证明,一般思路有两种:1.若{an}可求和,则可直接求出其和,再转化为,而后一般转化为函数,或单调性来比较大小;2.若{an}不可求和,则利用放缩法转化为可求和数列,再重复1的过程。1.应用放缩法证明,将不规则的数列变成规则的数列,将其放大或是缩小。但如果出界了怎么办(放的太大或缩的太小),一般情况下,我们从第二项开始再放缩,如果还大则在尝试从第三项开始放缩。2.应用数列单调性求数列中的最大或最小项。我们一般将数列中的看做自变量,看做因变量,用函数部分求最值方法来求数列的最值;或者可以利用做商比较大小(一般出现幂时采取这个方法);也可相减做差求单调性。3-1.设各项均为正数的数列的前项和为,且满足,.(1)求的值;(2)求数列的通项公式;(3)证明:对一切正整数,有.3-2.记公差不为0的等差数列的前项和为,,成等比数列.(1)求数列的通项公式及;(2)若,n=1,2,3,…,问是否存在实数,使得数列为单调递减数列?若存在,请求出的取值*围;若不存在,请说明理由.牛刀小试:1.数列的前项和为,已知,().(1)求;(2)求数列的通项;(3)设,数列的前项和为,证明:().2.设数列的前项和为.已知,,.(1)求的值;(2)求数列的通项公式;(3)证明:对一切正整数,有.数列作业设数列的前项和为,且,求数列的通项;设,数列的前项和为,求证:.2.已知是各项均为正数的等比数列,且(I)求数列的通项公式;(II)设数列满足,求数列的前项和。3.已知数列的各项均为正数,其前项和为,且满足,N.(1)求的值;(2)求数列的通项公式;(3)是否存在正整数,使,,成等比数列"若存在,求的值;若不存在,请说明理由.已知为数列的前项和,(),且.(1)求的值;(2)求数列的前项和;(3)设数列满足,求证:.设数列的前项和为,且.求数列的通项公式;设数列满足:,又,且数列的前项和为,求证:.6.已知数列{bn}满足3(n+1)bn=nbn+1,且b1=3.(1)求数列{bn}的通项公式;(2)已知eq\f(an,bn)=eq\f(n+1,2n+3),求证:eq\f(5,6)≤eq\f(1,a1)+eq\f(1,a2)+…+eq\f(1,an)<1.7.已知数列{an}的前n项和为Sn,且Sn=2an-1;数列{bn}满足bn-1-bn=bnbn-1(n≥2,n∈N*),b1=1.(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版通讯器材购销合同3篇
- 2025年度大型活动场地租赁及服务合同4篇
- 2025年PVC管道产品检测与质量保证服务合同范本3篇
- 2025年消防给水系统设备及工程安全防护合同3篇
- 2025年度餐饮股份合作人力资源合作协议3篇
- 2024版跨国投资风险共保协议版B版
- 二零二五版国有控股企业股权置换与混合所有制改革合同3篇
- 2025年度消防安全通道维护外包服务合同3篇
- 2024移动支付技术服务合同
- 2024版暂定协议总价协议样本版B版
- GA/T 1003-2024银行自助服务亭技术规范
- 《消防设备操作使用》培训
- 新交际英语(2024)一年级上册Unit 1~6全册教案
- 2024年度跨境电商平台运营与孵化合同
- 2024年电动汽车充电消费者研究报告-2024-11-新能源
- 湖北省黄冈高级中学2025届物理高一第一学期期末考试试题含解析
- 上海市徐汇中学2025届物理高一第一学期期末学业水平测试试题含解析
- 稻壳供货合同范本
- 《采气树基础知识》课件
- 超龄员工用工免责协议书
- 机械工程师招聘笔试题及解答(某大型国企)
评论
0/150
提交评论