2022-2023学年广东省东莞市普通高校对口单招数学自考模拟考试(含答案)_第1页
2022-2023学年广东省东莞市普通高校对口单招数学自考模拟考试(含答案)_第2页
2022-2023学年广东省东莞市普通高校对口单招数学自考模拟考试(含答案)_第3页
2022-2023学年广东省东莞市普通高校对口单招数学自考模拟考试(含答案)_第4页
2022-2023学年广东省东莞市普通高校对口单招数学自考模拟考试(含答案)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年广东省东莞市普通高校对口单招数学自考模拟考试(含答案)班级:________姓名:________考号:________

一、单选题(10题)1.若函数f(x)=kx+b,在R上是增函数,则()A.k>0B.k<0C.b<0D.b>0

2.为了了解全校240名学生的身高情况,从中抽取240名学生进行测量,下列说法正确的是()A.总体是240B.个体是每-个学生C.样本是40名学生D.样本容量是40

3.若集合A={1,2,3},B={1,3,4},则A∩B的子集的个数为()A.2B.3C.4D.16

4.若输入-5,按图中所示程序框图运行后,输出的结果是()A.-5B.0C.-1D.1

5.在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为()A.3/4B.5/8C.1/2D.1/4

6.把6本不同的书分给李明和张强两人,每人3本,不同分法的种类数为()A.

B.

C.

D.

7.的展开式中,常数项是()A.6B.-6C.4D.-4

8.已知向量a=(1,k),b=(2,2),且a+b与a共线,那么a×b的值为()A.1B.2C.3D.4

9.己知向量a

=(2,1),b

=(-1,2),则a,b之间的位置关系为()A.平行B.不平行也不垂直C.垂直D.以上都不对

10.A.B.C.D.

二、填空题(10题)11.不等式的解集为_____.

12.等比数列中,a2=3,a6=6,则a4=_____.

13.函数f(x)=+㏒2x(x∈[1,2])的值域是________.

14.

15.在△ABC中,C=60°,AB=,BC=,那么A=____.

16.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:4,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有6件,那么n=

17.

18.若函数_____.

19.sin75°·sin375°=_____.

20.如图所示,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为____。

三、计算题(5题)21.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

22.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

23.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

24.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

25.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

四、简答题(10题)26.某中学试验班有同学50名,其中女生30人,男生20人,现在从中选取2人取参加校际活动,求(1)选出的2人都是女生的概率。(2)选出的2人是1男1女的概率。

27.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。

28.平行四边形ABCD中,CBD沿对角线BD折起到平面CBD丄平面ABD,求证:AB丄DE。

29.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。

30.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.

31.解关于x的不等式

32.已知cos=,,求cos的值.

33.证明上是增函数

34.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn

35.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD

五、解答题(10题)36.已知函数(1)f(π/6)的值;(2)求函数f(x)的最小正周期和单调递增区间.

37.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的两焦点分别F1,F2点P在椭圆C上,且∠PF2F1=90°,|PF1|=6,|PF2|=2.(1)求椭圆C的方程;(2)是否存在直线L与椭圆C相交于A、B两点,且使线段AB的中点恰为圆M:x2+y2+4x-2y=0的圆心,如果存在,求直线l的方程;如果不存在,请说明理由.

38.

39.已知函数f(x)=2sin(x-π/3).(1)写出函数f(x)的周期;(2)将函数f(x)图象上所有的点向左平移π/3个单位,得到函数g(x)的图象,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.

40.如图,在三棱锥A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°点E,F分别是AC,AD的中点.(1)求证:EF//平面BCD;(2)求三棱锥A-BCD的体积.

41.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

42.已知直线经过椭圆C:x2/a2+y2/b2=1(a>b>0)的一个顶点B和一个焦点F.(1)求椭圆的离心率;(2)设P是椭圆C上动点,求|PF|-|PB|的取值范围,并求|PF|-|PB||取最小值时点P的坐标.

43.求函数f(x)=x3-3x2-9x+5的单调区间,极值.

44.如图,在四棱锥P-ABCD中,底面是正方形,PD⊥平面ABCD,且PD=AD.(1)求证:PA⊥CD;(2)求异面直线PA与BC所成角的大小.

45.解不等式4<|1-3x|<7

六、单选题(0题)46.在等差数列{an}中,若a2=3,a5=9,则其前6项和S6=()A.12B.24C.36D.48

参考答案

1.A

2.D确定总体.总体是240名学生的身高情况,个体是每一个学生的身高,样本是40名学生的身髙,样本容量是40.

3.C集合的运算.A∩B={1,3},其子集为22=4个

4.D程序框图的运算.因x=-5,不满足>0,所以在第一个判断框中

5.C随机抽样的概率.分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P=1/2.故选C

6.D

7.A

8.D平面向量的线性运算∵向量a=(1,k),b=(2,2),∴a+b=(3,k+2),又a+b与a共线.∴(k+2)-3k=0,解得k=1,∴A×b=(1,1).(2,2)=1×2+1×2=4,

9.C

10.A

11.-1<X<4,

12.

,由等比数列性质可得a2/a4=a4/a6,a42=a2a6=18,所以a4=.

13.[2,5]函数值的计算.因为y=2x,y=㏒2x为増函数,所以y=2x+㏒2x在[1,2]上单调递增,故f(x)∈[2,5].

14.-1/2

15.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由题知BC<AB,得A<C,所以A=45°.

16.72

17.a<c<b

18.1,

19.

20.2/π。

21.

22.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

23.

24.

25.

26.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510

(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510

选出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897

27.

28.

29.

30.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴数列为首项b1=32,q=16的等比数列

31.

32.

33.证明:任取且x1<x2∴即∴在是增函数

34.

35.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)

36.

37.

38.

39.(1)f(x)=2sin(x-π/4),T=2π/|π|=2π(2)由题意得g(x)=f(x+π/3)=2sin[(x+π/3)-π/3]=2sinx,x∈R.∵g(-x)=2sin(-x)=-2sinx=-g(x),为奇函数.

40.

41.

42.

43.f(x)=x3-6x-9=3(x+1)(x-3)令f(x)>0,∴x>3或x,-1.令f(x)<0时,-1<x<3.∴f(x)单调增区间为(-∞,-1],[3,+∞),单调减区间为[-1,3].f(x)极大值为f(-1)=l0,f(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论