版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同.现了解到以下情况:(1)甲不是最高的;(2)最高的没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步;可以判断丙参加的比赛项目是()A.跑步比赛 B.跳远比赛 C.铅球比赛 D.无法判断2.以圆:的圆心为圆心,3为半径的圆的方程为()A. B.C. D.3.已知定义在R上的函数满足:对任意x∈R,都有成立,且当时,(其中为的导数).设,则a,b,c三者的大小关系是()A. B. C. D.4.某公司为确定明年投入某产品的广告支出,对近年的广告支出与销售额(单位:百万元)进行了初步统计,得到下列表格中的数据:经测算,年广告支出与年销售额满足线性回归方程,则的值为()A. B. C. D.5.过抛物线的焦点的直线交抛物线于两点,其中点,且,则()A. B. C. D.6.已知,,那么等于()A. B. C. D.7.给定下列两个命题:①“”为真是“”为真的充分不必要条件;②“,都有”的否定是“,使得”,其中说法正确的是()A.①真②假 B.①假②真 C.①和②都为假 D.①和②都为真8.随机变量的分布列如右表,若,则()012A. B. C. D.9.已知随机变量服从正态分布,且,则()A. B. C. D.10.若,,0,1,2,3,…,6,则的值为()A. B. C.1 D.211.高三(1)班需要安排毕业晚会的4个音乐节目、2个舞蹈节目和l个曲艺节目的演出顺序要求两个舞蹈节目不连排,则不同排法的种数是()A.800 B.5400 C.4320 D.360012.设锐角的三个内角的对边分别为且,,则周长的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设随机变量服从正态分布,如果,则________.14.已知两个单位向量,的夹角为,,若,则_____.15.已知是第四象限角,,则_______;16.某学校为了了解住校学生每天在校平均开销情况,随机抽取了名学生,他们的每天在校平均开销都不低于20元且不超过60元,其频率分布直方图如图三所示,则其中每天在校平均开销在元的学生人数为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角所对的边分别是,已知.(1)求;(2)若的面积为,,,求,.18.(12分)已知(a∈R).(1)当时,判断f(x)在定义域上的单调性;(2)若f(x)在[1,e]上的最小值为,求a的值;(3)若f(x)<x2在(1,+∞)上恒成立,试求19.(12分)已知函数(1)若不等式的解集为,求实数的值;(2)若不等式对一切实数恒成立,求实数的取值范围.20.(12分)已知函数()=In(1+)-+(≥0).(Ⅰ)当=2时,求曲线=()在点(1,(1))处的切线方程;(Ⅱ)求()的单调区间.21.(12分)毕业季有位好友欲合影留念,现排成一排,如果:(1)、两人不排在一起,有几种排法?(2)、两人必须排在一起,有几种排法?(3)不在排头,不在排尾,有几种排法?22.(10分)如图所示,三棱锥中,平面,,,为上一点,,,分别为,的中点.(1)证明:;(2)求平面与平面所成角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:由(1),(3),(4)可知,乙参加了铅球,由(2)可知乙不是最高的,所以三人中乙身高居中;再由(1)可知,甲是最矮的,参加了跳远,即可得出结论.详解:由(1),(3),(4)可知,乙参加了铅球,由(2)可知乙不是最高的,所以三人中乙身高居中;再由(1)可知,甲是最矮的,参加了跳远,所以丙最高,参加了跑步比赛.故选:A.点睛:本题考查合情推理,考查学生分析解决问题的能力.2、A【解析】
先求得圆M的圆心坐标,再根据半径为3即可得圆的标准方程.【详解】由题意可得圆M的圆心坐标为,以为圆心,以3为半径的圆的方程为.故选:A.【点睛】本题考查了圆的一般方程与标准方程转化,圆的方程求法,属于基础题.3、B【解析】试题分析:由题意得:对任意x∈R,都有,即f(x)=f(2-x)成立,所以函数的对称轴为x=1,所以f(3)=f(-1).因为当x∈(-∞,1)时,(x-1)f′(x)<0,所以f′(x)>0,所以函数f(x)在(-∞,1)上单调递增.因为-1<0<,所以f(-1)<f(0)<f(),即f(3)<f(0)<f(),所以c<a<b.故选B.考点:本题主要考查熟练函数的奇偶性、单调性、对称性等,利用导数研究函数的单调性。点评:中档题,熟练掌握函数的性质如奇偶性、单调性、周期性、对称性等,在给定区间,导数值非负,函数是增函数,导数值为非正,函数为减函数。自左向右看,函数图象上升,函数增;函数图象下降,函数减。4、D【解析】分析:求出,代入回归方程计算,利用平均数公式可得出的值.详解:,,,解得,故选D.点睛:本题主要考查平均数公式的应用,线性回归方程经过样本中心的性质,意在考查综合利用所学知识解决问题的能力,属于基础题.5、C【解析】
由已知可得,再由,即可求出结论.【详解】因为抛物线的准线为,点在抛物线上,所以,.故选:C【点睛】本题考查抛物线的标准方程,应用焦半径公式是解题的关键,属于基础题.6、B【解析】
根据条件概率公式得出可计算出结果.【详解】由条件概率公式得,故选B.【点睛】本题考查条件概率的计算,利用条件概率公式进行计算是解本题的关键,属于基础题.7、D【解析】
由充分条件和必要条件的定义对①进行判断,由全称命题的否定是特称命题对②进行判断,从而得到答案。【详解】对①,“”为真,则命题,都真,“”为真,则命题,至少一个为真,所以“”为真是“”为真的充分不必要条件,①为真命题;对②,全称命题的否定是特称命题,所以“,都有”的否定是“,使得”,②为真命题;故答案选D【点睛】本题考查命题真假的判定,属于基础题。8、B【解析】分析:根据题目条件中给出的分布列,可以知道和之间的关系,根据期望为,又可以得到一组关系,这样得到方程组,解方程组得到的值.进而求得.详解:根据题意,解得则故选B.点睛:本题考查期望、方差和分布列中各个概率之间的关系,属基础题.9、B【解析】
先计算出,由正态密度曲线的对称性得出,于是得出可得出答案.【详解】由题可知,,由于,所以,,因此,,故选B.【点睛】本题考查正态分布在指定区间上的概率,考查正态密度曲线的对称性,解题时要注意正态密度曲线的对称轴,利用对称性来计算,考查运算求解能力,属于基础题.10、C【解析】
根据题意,采用赋值法,令得,再将原式化为根据二项式定理的相关运算,求得,从而求解出正确答案.【详解】在中,令得,由,可得,故.故答案选C.【点睛】本题考查二项式定理的知识及其相关运算,考查考生的灵活转化能力、分析问题和解决问题的能力.11、D【解析】先排4个音乐节目和1个曲艺节目共有种排法,再从5个节目的6隔空插入两个不同的舞蹈节目有种排法,∴共有种排法,故选D12、C【解析】因为△为锐角三角形,所以,,,即,,,所以,;又因为,所以,又因为,所以;由,即,所以,令,则,又因为函数在上单调递增,所以函数值域为,故选C点睛:本题解题关键是利用正弦定理实现边角的转化得到周长关于角的函数关系,借助二次函数的单调性求最值,易错点是限制角的取值范围.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据随机变量符合正态分布和正态分布的曲线关于对称,得到一对对称区间的概率之间的关系,即可求得结果【详解】随机变量服从正态分布曲线关于直线对称故答案为【点睛】本题主要考查的知识点是正态分布,解题的关键是正态分布和正态分布的曲线关于对称,属于基础题。14、2;【解析】
试题分析:由可得,即,故填2.考点:1.向量的运算.2.向量的数量积.15、【解析】
:由同角三角关系求解【详解】:,设,由同角三角关系可得。【点睛】:三角正余弦值的定义为,。16、1【解析】分析:由频率分布直方图,得每天在校平均开销在[50,60]元的学生所点的频率为0.3,由此能求出每天在校平均开销在[50,60]元的学生人数.详解:由频率分布直方图,得:每天在校平均开销在[50,60]元的学生所点的频率为:1﹣(0.01+0.024+0.036)×10=0.3∴每天在校平均开销在[50,60]元的学生人数为500×0.3=1.故答案为1点睛:本题考查频率分布直方图的应用,考查频数的求法,考查频率分布直方图等基础知识,意在考查学生对这些基础知识的掌握能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】试题分析:(1)由正弦定理得;(2)由,再由余弦订立的得.试题解析:(1)由已知结合正弦定理得所以即,亦即因为,所以.(2)由,,得,即,又,得所以,又,∴18、(1)见解析;(2)a=-e【解析】分析:(1)f(x)的定义域为(0,+∞),f′(x)=+=,由此利用导数性质能求出f(x)在(0,+∞)上是单调递增函数;(2)由(1)根据a的取值范围分类讨论,由此利用导数性质能求出a;(3)由fx<x2⇔详解:(1)由题意知f(x)的定义域为(0,+∞),且f′(x)=+=.∵a>0,∴f′(x)>0,故f(x)在(0,+∞)上是单调递增函数.(2)由(1)可知,f′(x)=.①若a≥-1,则x+a≥0,即f′(x)≥0在[1,e]上恒成立,此时f(x)在[1,e]上为增函数,∴f(x)min=f(1)=-a=,∴a=-(舍去).②若a≤-e,则x+a≤0,即f′(x)≤0在[1,e]上恒成立,此时f(x)在[1,e]上为减函数,∴f(x)min=f(e)=1-=,∴a=-(舍去).③若-e<a<-1,令f′(x)=0得x=-a,当1<x<-a时,f′(x)<0,∴f(x)在(1,-a)上为减函数;当-a<x<e时,f′(x)>0,∴f(x)在(-a,e)上为增函数,∴f(x)min=f(-a)=ln(-a)+1=,∴a=-.综上所述,a=-.(3)∵f(x)<x2,∴lnx-<x2.又x>0,∴a>xlnx-x3.令g(x)=xlnx-x3,h(x)=g′(x)=1+lnx-3x2,h′(x)=-6x=.∵x∈(1,+∞)时,h′(x)<0,∴h(x)在(1,+∞)上是减函数.∴h(x)<h(1)=-2<0,即g′(x)<0,∴g(x)在(1,+∞)上也是减函数.g(x)<g(1)=-1,∴当a≥-1时,f(x)<x2在(1,+∞)上恒成立.故a的取值范围是[-1,+∞).点睛:本题考查函数的单调区间和实数取值范围的求法,解题时认真审题,注意分类讨论思想和导数性质的合理应用.19、(1).(2).【解析】分析:(1)根据二次不等式的解集与二次方程的根的关系可得参数;(2)这个不等式恒成立,首先讨论时,能不能恒成立,其次在时,这是二次不等式,结合二次函数的性质可求解.详解:(1)的解集为,则的解为和2,且,∴,解得.(2)由,得,若a=0,不等式不对一切实数x恒成立,舍去,若a≠0,由题意得,解得:,故a的范围是:点睛:三个二次(一元二次方程、一元二次不等式、二次函数)之间的关系是我们必须掌握的知识:判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1或x>x2}{x|x≠x1}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅20、(I)(II)见解析【解析】
(I)(II)当时,得单调递增区间是,单调递减区间是.当时,得单调递增区间是和,单调递减区间是.当时得单调递增区间是.当时,得单调递增区间是和,单调递减区间是21、(1);(2);(3).【解析】
(1)利用插空法可求出排法种数;(2)利用捆绑法可求出排法种数;(3)分两种情况讨论:①若在排尾;②若不在排尾.分别求出每一种情况的排法种数,由加法原理计算可得出答案.【详解】(1)将、插入到其余人所形成的个空中,因此,排法种数为;(2)将、两人捆绑在一起看作一个复合元素和其他人去安排,因此,排法种数为;(3)分以下两种情况讨论:①若在排尾,则剩下的人全排列,故有种排法;②若不在排尾,则有个位置可选,有个位置可选,将剩下的人全排列,安排在其它个位置即可,此时,共有种排法.综上所述,共有种不同的排法种数.【点睛】本题考查了排列、组合的应用,同时也考查了插空法、捆绑法以及分类计数原理的应用,考查计算能力,属于中等题.22、(1)见解析;(2)见解析.【解析】分析:由PA=AC=AB,N为AB上一点,AB=4AN,我
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024工厂租赁的协议书
- 2024年度分公司质量保障与售后服务协议3篇
- 2024年度农作物健康保护合作合同版B版
- 2024年专业咨询公司销售服务协议样本版B版
- 2024年度园林绿化工程车辆租赁合同3篇
- 2024年企业数字化转型升级合同
- 2024年制造业打磨工固定期限协议版B版
- 2024商用浴室改造项目承包协议
- 2024年工程领域劳务分包协议样本版B版
- 2024年度围墙施工及材料供应合同
- 小学数学六年级上册《用百分数解决问题》(新人教版)课件
- 钻孔灌注桩钢筋笼自动计算表格
- 人教版新教材高中生物选择性必修二知识点总结复习(备考必背)
- 14《故都的秋》课件29张 高中语文统编版必修上册第七单元
- 临床医师甲乳外科进修总结
- 压力性损伤的预防
- 推荐游戏的摇滚音乐论文范例赏析(共4篇)
- 隧道施工现场通用检查表
- 高速公路施工道路安全管理措施教学课件
- 公司战略规划和落地方法之:五看三定工具解析课件
- 求平面直角坐标系中三角形的面积市公开课一等奖省名师优质课赛课一等奖课件
评论
0/150
提交评论