湖北省华师一附中、黄冈中学等八校2023年数学高二下期末达标检测模拟试题含解析_第1页
湖北省华师一附中、黄冈中学等八校2023年数学高二下期末达标检测模拟试题含解析_第2页
湖北省华师一附中、黄冈中学等八校2023年数学高二下期末达标检测模拟试题含解析_第3页
湖北省华师一附中、黄冈中学等八校2023年数学高二下期末达标检测模拟试题含解析_第4页
湖北省华师一附中、黄冈中学等八校2023年数学高二下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,“”,“”,则是的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.设,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.平面向量与的夹角为,,,则()A. B. C.0 D.24.给出定义:若函数在D上可导,即存在,且导函数在D上也可导,则称在D上存在二阶导函数,记,若在D上恒成立,则称在D上为凸函数.以下四个函数在上不是凸函数的是()A. B.C. D.5.为了落实中央提出的精准扶贫政策,永济市人力资源和社会保障局派人到开张镇石桥村包扶户贫困户,要求每户都有且只有人包扶,每人至少包扶户,则不同的包扶方案种数为()A. B. C. D.6.已知展开式中项的系数为,其中,则此二项式展开式中各项系数之和是()A. B.或 C. D.或7.如图,和都是圆内接正三角形,且,将一颗豆子随机地扔到该圆内,用表示事件“豆子落在内”,表示事件“豆子落在内”,则()A. B. C. D.8.已知,则方程的实根个数为,且,则()A. B. C. D.9.设实数x,y满足约束条件3x-2y+4≥0x+y-4≤0x-ay-2≤0,已知z=2x+y的最大值是7,最小值是A.6B.-6C.-1D.110.从4名男生和2名女生中任选3人参加演讲比赛,用表示所选3人中女生的人数,则为()A.0 B.1 C.2 D.311.已知f(x)为偶函数,且当x∈[0,2)时,f(x)=2sinx,当x∈[2,+∞)时,f(x)=log2x,则等于()A.-+2 B.1C.3 D.+212.设△ABC的三边长分别为a,b,c,△ABC的面积为S,则△ABC的内切圆半径为.将此结论类比到空间四面体:设四面体的四个面的面积分别为S1,S2,S3,S4,体积为V,则四面体的内切球半径为r=()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若{an}为等差数列,Sn是其前n项的和,且S11=π,则tana6=________.14.设复数满足,则=__________.15.设事件A在每次试验中发生的概率相同,且在三次独立重复试验中,若事件A至少发生一次的概率为6364,则事件A恰好发生一次的概率为_____16.设,则等于_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某工厂拟生产并销售某电子产品m万件(生产量与销售量相等),为扩大影响进行销售,促销费用x(万元)满足(其中,为正常数).已知生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,此工厂所获利润最大?18.(12分)若.(1)讨论的单调性;(2)若对任意,关于的不等式在区间上恒成立,求实数的取值范围.19.(12分)已知函数.(Ⅰ)若曲线在处切线的斜率等于,求的值;(Ⅱ)若对于任意的,,总有,求的取值范围.20.(12分)如图,椭圆经过点,且点到椭圆的两焦点的距离之和为.(l)求椭圆的标准方程;(2)若是椭圆上的两个点,线段的中垂线的斜率为且直线与交于点,为坐标原点,求证:三点共线.21.(12分)已知不等式.(1)当时,求不等式的解集;(2)若不等式的解集为,求的范围.22.(10分)已知为实数,函数,函数.(1)当时,令,求函数的极值;(2)当时,令,是否存在实数,使得对于函数定义域中的任意实数,均存在实数,有成立,若存在,求出实数的取值集合;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

利用不等式的性质和充分必要条件的定义进行判断即可得到答案.【详解】充分性:.所以即:,充分性满足.必要性:因为,所以,.又因为,所以,即.当时,,不等式不成立.当时,,,不等式不成立当时,,,不等式成立.必要性满足.综上:是的充要条件.故选:C【点睛】本题主要考查充要条件,同时考查了对数的比较大小,属于中档题.2、A【解析】

先求出,再判断得解.【详解】,所以复数对应的点为(3,5),故复数表示的点位于第一象限.故选A【点睛】本题主要考查共轭复数的计算和复数的几何意义,意在考查学生对该知识的理解掌握水平,属于基础题.3、D【解析】

先由,求出,再求出,进而可求出【详解】因为,所以,所以,所以.故选D【点睛】本题主要考查向量模的运算,熟记公式即可,属于基础题型.4、D【解析】

对A,B,C,D四个选项逐个进行二次求导,判断其在上的符号即可得选项.【详解】若,则,在上,恒有;若,则,在上,恒有;若,则,在上,恒有;若,则.在上,恒有,故选D.【点睛】本题主要考查函数的求导公式,充分理解凸函数的概念是解题的关键,属基础题.5、C【解析】

先分组再排序,可得知这人所包扶的户数分别为、、或、、,然后利用分步计数原理可得出所求方案的数目.【详解】由题意可知,这人所包扶的户数分别为、、或、、,利用分步计数原理知,不同的包扶方案种数为,故选C.【点睛】本题考查排列组合的综合问题,考查分配问题,求解这类问题遵循先分组再排序的原则,再分组时,要注意平均分组的问题,同时注意分步计数原理的应用,考查分析问题和解决问题的能力,属于中等题.6、B【解析】

利用二项式定理展开通项,由项的系数为求出实数,然后代入可得出该二项式展开式各项系数之和.【详解】的展开式通项为,令,得,该二项式展开式中项的系数为,得.当时,二项式为,其展开式各项系数和为;当时,二项式为,其展开式各项系数和为.故选B.【点睛】本题考查二项式定理展开式的应用,同时也考查了二项式各项系数和的概念,解题的关键就是利用二项式定理求出参数的值,并利用赋值法求出二项式各项系数之和,考查运算求解能力,属于中等题.7、D【解析】如图所示,作三条辅助线,根据已知条件,这些小三角形全等,包含个小三角形,同时又在内的小三角形共有个,所以,故选D.8、A【解析】

由与的图象交点个数可确定;利用二项式定理可分别求得和的展开式中项的系数,加和得到结果.【详解】当时,与的图象如下图所示:可知与有且仅有个交点,即的根的个数为的展开式通项为:当,即时,展开式的项为:又本题正确选项:【点睛】本题考查利用二项式定理求解指定项的系数的问题,涉及到函数交点个数的求解;解题关键是能够将二项式配凑为展开项的形式,从而分别求解对应的系数,考查学生对于二项式定理的综合应用能力.9、D【解析】试题分析:画出不等式组表示的区域如图,从图形中看出当不成立,故,当直线经过点时,取最大值,即,解之得,所以应选D.考点:线性规划的知识及逆向运用.【易错点晴】本题考查的是线性约束条件与数形结合的数学思想的求参数值的问题,解答时先构建平面直角坐标系,准确的画出满足题设条件3x-2y+4≥0x+y-4≤0x-ay-2≤0的平面区域,然后分类讨论参数的符号,进而移动直线,发现当该直线经过点时取得最大值,以此建立方程,通过解方程求出参数的值.10、B【解析】

先由题意得到的可能取值为,分别求出其对应概率,进而可求出其期望.【详解】由题意,的可能取值为,由题中数据可得:,,,所以.故选B【点睛】本题主要考查离散型随机变量的期望,熟记期望的概念,会求每个事件对应的概率即可,属于常考题型.11、D【解析】

函数f(x)为偶函数,可得f(﹣)=f()再将其代入f(x)=2sinx,进行求解,再根据x∈[2,+∞)时f(x)=log2x,求出f(4),从而进行求解;【详解】∵函数f(x)为偶函数,∴f(﹣)=f(),∵当x∈[0,2)时f(x)=2sinx,∴f(x)=2sin=2×=;∵当x∈[2,+∞)时f(x)=log2x,∴f(4)=log24=2,∴=+2,故选:D.【点睛】此题主要考查函数值的求解问题,解题的过程中需要注意函数的定义域,属于基础题12、C【解析】

由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.【详解】设四面体的内切球的球心为O,则球心O到四个面的距离都是r,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为:,所以.故选:C【点睛】本题主要考查了类比推理的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、-【解析】S11==11a6=π,∴a6=,∴tana6=-14、【解析】

分析:由可得,再利用两个复数代数形式的除法法则化简,结合共轭复数的定义可得结果.详解:满足,,所以,故答案为.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.15、9【解析】分析:假设事件A在每次试验中发生说明试验成功,设每次试验成功的概率为p,由题意得,事件A发生的次数X~B(3,p),由此能求出事件A恰好发生一次的概率.详解:假设事件A在每次试验中发生说明试验成功,设每次试验成功的概率为p,由题意得,事件A发生的次数X~B(3,p),则有1﹣(1﹣p)3=6364,得p=3则事件A恰好发生一次的概率为C3故答案为:964点睛:(1)本题主要考查独立重复性试验的概率,意在考查学生对该知识的掌握水平.(2)在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生K次的概率是:Pn(ξ=k)=Cnkpk(1-p)n-k,(k=0,1,2,3,...n).正好是二项式[(1-p)+p]16、【解析】设,则,则.应填答案。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)当时,利润最大值为17万元,当时,最大利润万元【解析】

(1)利润为单价乘以产品件数减去促销费用再减去投入成本;(2)可有对勾函数的的单调性求得最大值.【详解】(1),将代入(2)令,在单减,单增∴当时,利润最大值为17万元当时,最大利润万元【点睛】本题考查函数的应用,解题关键是确定关系式求得函数解析式,然后通过函数解析式求得最值等.18、(1)见解析(2)【解析】

(1)求导得,再分成、、、四种情况,结合导数的符号得出函数的单调性;(2)设,,得单调性,则,由(1)可得,则,令,求导,令,,根据导数可得出函数的单调性与最值,由此可以求出答案.【详解】解:(1),①当时,令则,令,则,∴在上单调递减,在单调递增;②当时,,令,则或,令,则,∴在和上单调递增,在上单调递减;③当时,在上单调递增;④当时,令则或,令则,∴在和上单调递增,在上单调递减;(2)当时,,设,,∴在上递增,,∴,由(1)知在上递减,在上递增,∴,∴,令,则,令,,当时,,故在上递减,∴,∴,∴在上递增,∵,∴.【点睛】本题主要考查利用导数研究函数的单调性与最值,考查利用导数研究函数恒成立问题,考查推理能力与计算能力,考查转化与化归思想与分类讨论思想,多次求导是解决本题的关键,属于难题.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)求导得到,解得答案.(Ⅱ)变换得到,设,则在单调递减,恒成立,令,根据函数的单调性得到答案.【详解】(Ⅰ)∵,∴.由,解得.(Ⅱ)∵,不妨设,,即,即设,则在单调递减,∴在恒成立.,,∴在恒成立.令,则,令,,∴当时,,即在单调递减,且,∴在恒成立,∴在单调递减,且,∴.【点睛】本题考查了根据切线求参数,恒成立问题,意在考查学生的计算能力和综合应用能力.20、(1)(2)见解析【解析】分析:(1)根据椭经过点,且点到椭圆的两焦点的距离之和为,结合性质,,列出关于、的方程组,求出、,即可得椭圆的标准方程;(2)可设直线的方程为,联立得,设点,根据韦达定理可得,所以点在直线上,又点也在直线上,进而得结果.详解:(1)因为点到椭圆的两焦点的距离之和为,所以,解得.又椭圆经过点,所以.所以.所以椭圆的标准方程为.证明:(2)因为线段的中垂线的斜率为,所以直线的斜率为-2.所以可设直线的方程为.据得.设点,,.所以,.所以,.因为,所以.所以点在直线上.又点,也在直线上,所以三点共线.点睛:用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程或;③找关系:根据已知条件,建立关于、、的方程组;④得方程:解方程组,将解代入所设方程,即为所求.21、(Ⅰ);(Ⅱ)是【解析】试题分析:(1)由题意,根据两个绝对值式的零点,对的取值范围进行分段求解,综合所有情况,从而可得不等式的解;(2)由不等式的解集为,由(1)作函数图形,结合图形,可直线斜率,从而可求出实数的取值范围,由此问题可得解.试题解析:(1)由已知,可得当时,若,则,解得若,则,解得若,则,解得综上得,所求不等式的解集为;(2)不妨设函数,则其过定点,如图所示,由(1)可得点,由此可得,即.所以,所求实

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论