




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点为双曲线上一点,则它的离心率为()A. B. C. D.2.某班上午有五节课,计划安排语文、数学、英语、物理、化学各一节,要求语文与化学相邻,且数学不排第一节,则不同排法的种数为()A. B. C. D.3.设函数满足则时,()A.有极大值,无极小值 B.有极小值,无极大值C.既有极大值又有极小值 D.既无极大值也无极小值4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是A.B.C.D.5.将两颗骰子各掷一次,设事件A为“两颗骰子向上点数不同”,事件B为“至少有一颗骰上点数为3点”则()A. B. C. D.6.若函数至少存在一个零点,则的取值范围为()A. B. C. D.7.已知服从正态分布的随机变量,在区间、和内取值的概率分别为、、和.某企业为名员工定制工作服,设员工的身高(单位:)服从正态分布,则适合身高在范围内员工穿的服装大约要定制()A.套 B.套 C.套 D.套8.已知函数的导函数为,若,则函数的图像可能是()A. B. C. D.9.下列选项错误的是()A.“”是“”的充分不必要条件.B.命题“若,则”的逆否命题是“若,则”C.若命题“”,则“”.D.若“”为真命题,则均为真命题.10.通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由得参照附表,得到的正确结论是().爱好不爱好合计男生20525女生101525合计302050附表:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828A.有99.5%以上的把握认为“爱好该项运动与性别有关”B.有99.5%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”11.在5张扑克牌中有3张“红心”和2张“方块”,如果不放回地依次抽取2张牌,则在第一次抽到“红心”的条件下,第二次抽到“红心”的概率为A.625 B.310 C.312.已知随机变量,则参考数据:若,A.0.0148 B.0.1359 C.0.1574 D.0.3148.二、填空题:本题共4小题,每小题5分,共20分。13.若关于的不等式的解集是,则实数的值是__________.14.在平面凸四边形ABCD中,,点M,N分别是边AD,BC的中点,且,若,,则的值为________.15.曲线在点处的切线方程为__________.16.已知X的分布列为X-101Pa设,则E(Y)的值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已如变换对应的变换矩阵是,变换对应的变换矩阵是.(Ⅰ)若直线先经过变换,再经过变换后所得曲线为,求曲线的方程;(Ⅱ)求矩阵的特征值与特征向量.18.(12分)若函数(1)若,求曲线在点处的切线方程;(2)若在上只有一个极值,且该极值小于,求的取值范围.19.(12分)已知椭圆:的一个焦点为,点在上.(1)求椭圆的方程;(2)若直线:与椭圆相交于,两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,说明理由.20.(12分)已知数列满足,且.(1)设,求证数列是等比数列;(2)设,求数列的前项和.21.(12分)已知关于的方程x2+kx+k2﹣2k=0有一个模为的虚根,求实数k的值.22.(10分)某种产品的以往各年的宣传费用支出(万元)与销售量(万件)之间有如下对应数据2456843678(1)试求回归直线方程;(2)设该产品的单件售价与单件生产成本的差为(元),若与销售量(万件)的函数关系是,试估计宣传费用支出为多少万元时,销售该产品的利润最大?(注:销售利润=销售额-生产成本-宣传费用)(参考数据与公式:,,)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
将点P带入求出a的值,再利用公式计算离心率。【详解】将点P带入得,解得所以【点睛】本题考查双曲线的离心率,属于基础题。2、B【解析】
先用捆绑法将语文与化学看成一个整体,考虑其顺序;将这个整体与英语,物理全排列,分析排好后的空位数目,再在空位中安排数学,最后由分步计数原理计算可得.【详解】由题得语文和化学相邻有种顺序;将语文和化学看成整体与英语物理全排列有种顺序,排好后有4个空位,数学不在第一节有3个空位可选,则不同的排课法的种数是,故选B.【点睛】本题考查分步计数原理,属于典型题.3、D【解析】
函数满足,,令,则,由,得,令,则在上单调递减,在上单调递增,的最小值为.又在单调递增,既无极大值也无极小值,故选D.考点:1、利用导数研究函数的单调性;2、利用导数研究函数的极值及函数的求导法则.【方法点睛】本题主要考察抽象函数的单调性以及函数的求导法则,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.本题通过观察导函数的“形状”,联想到函数,再结合条件判断出其单调性,进而得出正确结论.4、B【解析】试题分析:如图,几何体是四棱锥,一个侧面PBC⊥底面ABCD,底面ABCD是正方形,且边长为20,那么利用体积公式可知,故选B.考点:本题主要考查三视图、椎体的体积,考查简单几何体的三视图的运用.培养同学们的空间想象能力和基本的运算能力.点评:解决该试题的关键是由三视图可知,几何体是四棱锥,一个侧面垂直底面,底面是正方形,根据数据计算其体积.5、D【解析】
用组合数公式计算事件A和事件AB包含的基本事件个数,代入条件概率公式计算.【详解】解:两颗骰子各掷一次包含的基本事件的个数是1.事件A包含的基本事件个数有,则.事件AB包含的基本事件个数为10,则.所以在事件A发生的条件下,事件B发生的概率为:,故选:D.【点睛】本题考查条件概率,属于基础题.6、A【解析】
将条件转化为有解,然后利用导数求出右边函数的值域即可.【详解】因为函数至少存在一个零点所以有解即有解令,则因为,且由图象可知,所以所以在上单调递减,令得当时,单调递增当时,单调递减所以且当时所以的取值范围为函数的值域,即故选:A【点睛】1.本题主要考查函数与方程、导数与函数的单调性及简单复合函数的导数,属于中档题.2.若方程有根,则的范围即为函数的值域7、B【解析】
由可得,,则恰为区间,利用总人数乘以概率即可得到结果.【详解】由得:,,,又适合身高在范围内员工穿的服装大约要定制:套本题正确选项:【点睛】本题考查利用正态分布进行估计的问题,属于基础题.8、D【解析】
根据导数的几何意义和,确定函数在上单调递减,在上单调递增,在上单调递减,即可得出结论.【详解】函数的导函数为,,∴函数在上单调递减,在上单调递增,在上单调递减,故选:D.【点睛】本题考查函数的图象与其导函数的关系,考查学生分析解决问题的能力,属于基础题.9、D【解析】
根据充分条件和必要条件的定义,逆否命题的定义、含有量词的命题的否定以及复合命题的真假关系依次对选项进行判断即可得到答案。【详解】对于A,由可得或,即“”是“”的充分不必要条件,故A正确;对于B,根据逆否命题的定义可知命题“若,则”的逆否命题是“若,则”,故B正确;对于C,由全称命题的否定是存在命题,可知若命题“”,则“”,故C正确;对于D,根据复合命题的真值表可知若“”为真命题,则至少一个为真命题,故D错误。故答案选D【点睛】本题考查命题真假的判定,涉及到逆否命题的定义、充分条件与必要条件的判断、含有量词的命题的否定以及复合命题的真假关系,属于基础题。10、A【解析】
对照表格,看在中哪两个数之间,用较小的那个数据说明结论.【详解】由≈8.333>7.879,参照附表可得:有99.5%以上的把握认为“爱好该项运动与性别有关”,故选:A.【点睛】本题考查独立性检验,属于基础题.11、D【解析】
因为是不放回抽样,故在第一次抽到“红心”时,剩下的4张扑克中有2张“红心”和2张“方块”,根据随机事件的概率计算公式,即可计算第二次抽到“红心”的概率.【详解】因为是不放回抽样,故在第一次抽到“红心”的条件下,剩下的4张扑克中有2张“红心”和2张“方块”,第二次抽取时,所有的基本事件有4个,符合“抽到红心”的基本事件有2个,则在第一次抽到“红心”的条件下,第二次抽到“红心”的概率为12故答案选D【点睛】本题给出无放回抽样模型,着重考查抽样方法的理解和随机事件的概率等知识,属于基础题.12、B【解析】
根据正态分布函数的对称性去分析计算相应概率.【详解】因为即,所以,,又,,且,故选:B.【点睛】本题考查正态分布的概率计算,难度较易.正态分布的概率计算一般都要用到正态分布函数的对称性,根据对称性,可将不易求解的概率转化为易求解的概率.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:先根据二次函数图像得恒成立且的两根为1,3,再根据韦达定理求实数的值详解:因为关于的不等式的解集是,所以恒成立且的两根为1,3,所以.点睛:一元二次方程的根与对应一元二次不等式解集以及对应二次函数零点的关系,是数形结合思想,等价转化思想的具体体现,注意转化时的等价性.14、【解析】
通过表示,再利用可计算出,再计算出可得答案.【详解】由于M,N分别是边AD,BC的中点,故,,所以,所以,所以,而,所以,即,故,故答案为【点睛】本题主要考查向量的基底表示,数量积运算,意在考查学生的空间想象能力,运算能力,逻辑分析能力,难度较大.15、【解析】
利用切线的斜率是函数在切点处导数,求出切线斜率,再利用直线方程的点斜式求出切线方程.【详解】∵y=lnx,∴,∴函数y=lnx在x=1处的切线斜率为1,又∵切点坐标为(1,0),∴切线方程为y=x﹣1.故答案为:y=x﹣1.【点睛】本题考查了函数导数的几何意义,利用导数研究曲线上某点切线方程,正确求导是关键.16、【解析】
先利用频率之和为求出的值,利用分布列求出,然后利用数学期望的性质得出可得出答案.【详解】由随机分布列的性质可得,得,,因此,.故答案为.【点睛】本题考查随机分布列的性质、以及数学期望的计算与性质,灵活利用这些性质和相关公式是解题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)详见解析.【解析】
(Ⅰ)先求出变换矩阵,然后设曲线上一点,列出方程即可得到方程;(Ⅱ)先利用多项式求出特征根,然后求出特征向量.【详解】解:(Ⅰ),在曲线上任取一点,在变换的作用下得到点,则即,整理得,则即代入中得.(Ⅱ)矩阵的特征多项式为,令得或,①当时,由,得即令,则.所以矩阵的一个特征向量为;②当时,由,得,即令,则.所以矩阵的一个特征向量.【点睛】本题主要考查矩阵变换,特征值和特征向量的相关运算.意在考查学生的分析能力和计算能力,难度中等.18、(1)(2)【解析】
(1)求导得到,,得到切线方程.(2),讨论,,三种情况,得到函数单调区间,判断是否有极值,计算极值解不等式得到答案.【详解】(1)当时,,则,,所以切线方程为.(2),当时,在上单调递减,无极值;当时在上单调递增,在上单调递减,所以当时取得极小值,所以;当时,令或,设,当,当,,当时在上单调递增,在上单调递减,所以在时取得极大值,设,从而,,所以在上单调递减,,所以不符合题意.当时在上单调递增,此时在上无极值,不合题意.综上:取值范围是.【点睛】本题考查了函数的切线方程,极值问题,意在考查学生的计算能力和综合应用能力.19、(1)(2)见解析【解析】
先求出c的值,再根据,又,即可得到椭圆的方程;假设y轴上存在点,是以M为直角顶点的等腰直角三角形,设,,线段AB的中点为,根据韦达定理求出点N的坐标,再根据,,即可求出m的值,可得点M的坐标【详解】由题意可得,点在C上,,又,解得,,椭圆C的方程为,假设y轴上存在点,是以M为直角顶点的等腰直角三角形,设,,线段AB的中点为,由,消去y可得,,解得,,,,,,依题意有,,由,可得,可得,由可得,,,代入上式化简可得,则,解得,当时,点满足题意,当时,点满足题意【点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.20、(1)详见解析(2)【解析】
(1)由已知数列递推式可得,又,得,从而可得数列是等比数列;
(2)由(1)求得数列的通项公式,得到数列的通项公式,进一步得到,然后分类
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 硝普钠使用的观察和护理
- 竞聘管理者岗位
- 酒店安全意识培训
- 脑梗塞护理查房
- 江苏城市职业学院《健康运动学》2023-2024学年第二学期期末试卷
- 武汉软件工程职业学院《新媒体设计基础》2023-2024学年第二学期期末试卷
- 西安体育学院《莫言研究》2023-2024学年第二学期期末试卷
- 湖北省荆州市洪湖市-重点达标名校2025届初三第一次月考物理试题文试题含解析
- 杭州师范大学《高聚物合成实验》2023-2024学年第二学期期末试卷
- 贵州省铜仁市碧江区重点达标名校2025年初三四月考物理试题含解析
- 拼多多在线测评98道题
- 中国国新基金管理有限公司招聘笔试题库2024
- 环境监测站运行管理与质量控制标准
- 20以内的加法口算练习题4000题 284
- 国家开放大学《学前儿童语言教育活动指导》形成性考核1-4参考答案
- 城乡环卫一体化保洁服务投标方案(技术方案)
- 项目风险记录及跟踪表
- 直播运营专员岗位职责说明书
- 2024年吉林省长春莲花山生态旅游度假区事业单位招聘5人(3号)【重点基础提升】模拟试题(共500题)附带答案详解
- 2024年个人信用报告(个人简版)样本(带水印-可编辑)
- FZ∕T 73037-2019 针织运动袜行业标准
评论
0/150
提交评论