河南省辉县一高2022-2023学年高二数学第二学期期末复习检测试题含解析_第1页
河南省辉县一高2022-2023学年高二数学第二学期期末复习检测试题含解析_第2页
河南省辉县一高2022-2023学年高二数学第二学期期末复习检测试题含解析_第3页
河南省辉县一高2022-2023学年高二数学第二学期期末复习检测试题含解析_第4页
河南省辉县一高2022-2023学年高二数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数图象相邻两条对称轴之间的距离为,将函数的图象向左平移个单位,得到的图象关于轴对称,则()A.函数的周期为 B.函数图象关于点对称C.函数图象关于直线对称 D.函数在上单调2.已知某批零件的长度误差(单位)服从正态分布,若,,现从中随机取一件,其长度误差落在区间内的概率()A.0.0456 B.0.1359 C.0.2718 D.0.31743.A.30 B.24 C.20 D.154.构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,则与的面积之比为()A. B. C. D.5.由命题“周长为定值的长方形中,正方形的面积取得最大”可猜想:在表面积为定值的长方体中()A.正方体的体积取得最大B.正方体的体积取得最小C.正方体的各棱长之和取得最大D.正方体的各棱长之和取得最小6.如图是“向量的线性运算”知识结构,如果要加入“三角形法则”和“平行四边形法则”,应该放在()A.“向量的加减法”中“运算法则”的下位B.“向量的加减法”中“运算律”的下位C.“向量的数乘”中“运算法则”的下位D.“向量的数乘”中“运算律”的下位7.欧拉公式(i为虚数单位)是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式,若将表示的复数记为z,则的值为()A. B. C. D.8.设随机变量,,则()A. B. C. D.9.中,边的高为,若,,,,,则()A. B. C. D.10.如图,在正方体中,分别是,的中点,则四面体在平面上的正投影是A. B. C. D.11.设随机变量,若,则()A. B. C. D.12.函数的部分图象可能是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.命题“R”,此命题的否定是___.(用符号表示)14.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图),,,,,则这块菜地的面积为______.15.如图所示,为了测量,处岛屿的距离,小明在处观测,,分别在处的北偏西、北偏东方向,再往正东方向行驶40海里至处,观测在处的正北方向,在处的北偏西方向,则,两处岛屿间的距离为__________海里.16.已知复数,则复数______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)4个不同的红球和6个不同的白球放入同一个袋中,现从中取出4个球.(1)若取出的红球的个数不少于白球的个数,则有多少不同的取法?(2)取出一个红球记2分,取出一个白球记1分,若取出4个球所得总分不少于5分,则有多少种不同取法.18.(12分)已知的内角所对的边分别为,且.(1)若,角,求角的值;(2)若的面积,,求的值.19.(12分)如图,在空间几何体中,四边形是边长为2的正方形,,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.20.(12分)某研究性学习小组为了调查研究学生玩手机对学习的影响,现抽取了30名学生,得到数据如表:玩手机不玩手机合计学习成绩优秀8学习成绩不优秀16合计30已知在全部的30人中随机抽取1人,抽到不玩手机的概率为.(1)请将2×2列联表补充完整;(2)能否在犯错误的概率不超过0.005的前提下认为玩手机对学习有影响;(3)现从不玩手机,学习成绩优秀的8名学生中任意选取两人,对他们的学习情况进行全程跟踪,记甲、乙两名学生被抽到的人数为X,求X的分布列和数学期望.附:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828.21.(12分)已知函数(且)的图象过点.(Ⅰ)求实数的值;(Ⅱ)若,对于恒成立,求实数的取值范围.22.(10分)已知函数f(x)=xlnx,(I)判断曲线y=f(x)在点1,f(1)处的切线与曲线y=g(x)的公共点个数;(II)若函数y=f(x)-g(x)有且仅有一个零点,求a的值;(III)若函数y=f(x)+g(x)有两个极值点x1,x2,且

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

根据对称轴之间的距离,求得周期,再根据周期公式求得;再平移后,根据关于y轴对称可求得的值,进而求得解析式。根据解析式判断各选项是否正确。【详解】因为函数图象相邻两条对称轴之间的距离为所以周期,则所以函数函数的图象向左平移单位,得到的解析式为因为图象关于y轴对称,所以,即,k∈Z因为所以即所以周期,所以A错误对称中心满足,解得,所以B错误对称轴满足,解得,所以C错误单调增区间满足,解得,而在内,所以D正确所以选D【点睛】本题考查了三角函数的综合应用,周期、平移变化及单调区间的求法,属于基础题。2、B【解析】

,由此可得答案.【详解】解:由题意有,故选:B.【点睛】本题主要考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量和的应用,考查曲线的对称性,属于基础题.3、A【解析】

根据公式:计算即可.【详解】因为,故选:A.【点睛】本题考查排列数的计算,难度较易.4、D【解析】

由题意得出点为的中点,由余弦定理得出,结合三角形面积公式得出正确答案.【详解】,,即点为的中点由余弦定理得:解得:故选:D【点睛】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.5、A【解析】

根据类比规律进行判定选择【详解】根据平面几何与立体几何对应类比关系:周长类比表面积,长方形类比长方体,正方形类比正方体,面积类比体积,因此命题“周长为定值的长方形中,正方形的面积取得最大”,类比猜想得:在表面积为定值的长方体中,正方体的体积取得最大,故选A.【点睛】本题考查平面几何与立体几何对应类比,考查基本分析判断能力,属基础题.6、A【解析】

由“三角形法则”和“平行四边形法则”是向量的加减法的运算法则,由此易得出正确选项.【详解】因为“三角形法则”和“平行四边形法则”是向量的加减法的运算法则,故应该放在“向量的加减法”中“运算法则”的下位.故选A.【点睛】本题考查知识结构图,向量的加减法的运算法则,知识结构图比较直观地描述了知识之间的关联,解题的关键是理解知识结构图的作用及知识之间的上下位关系.7、A【解析】

根据欧拉公式求出,再计算的值.【详解】∵,∴.故选:A.【点睛】此题考查复数的基本运算,关键在于根据题意求出z.8、A【解析】

根据正态分布的对称性即可求得答案.【详解】由于,故,则,故答案为A.【点睛】本题主要考查正态分布的概率计算,难度不大.9、D【解析】

试题分析:由,,可知10、C【解析】分析:根据正投影的概念判断即可.详解:根据正投影的概念判断选C.选C.点睛:本题考查正投影的概念,需基础题.11、A【解析】

根据对立事件的概率公式,先求出,再依二项分布的期望公式求出结果【详解】,即,所以,,故选A.【点睛】本题主要考查二项分布的期望公式,记准公式是解题的关键.12、B【解析】∵,∴,∴函数的定义域为,又,∴函数为偶函数,且图象关于轴对称,可排除、.又∵当时,,可排除.综上,故选.点睛:有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.二、填空题:本题共4小题,每小题5分,共20分。13、∀x∈R,x2+x≤1.【解析】

直接利用特称命题的否定是全称命题写出结果即可.【详解】因为特称命题的否定是全称命题,所以∃x1∈R,x12﹣2x1+1>1的否定是:∀x∈R,x2+x≤1.故答案为:∀x∈R,x2+x≤1.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系及否定形式,属于基本知识的考查.14、【解析】

首先由斜二测图形还原平面图形,然后求解其面积即可.【详解】由几何关系可得,斜二测图形中:,由斜二测图形还原平面图形,则原图是一个直角梯形,其中上下底的长度分别为1,2,高为,其面积.【点睛】本题主要考查斜二测画法,梯形的面积公式等知识,意在考查学生的转化能力和计算求解能力.15、【解析】分析:根据已知条件,分别在和中计算,在用余弦定理计算.详解:连接,由题可知,,,,,,则在中,由正弦定理得为等腰直角三角形,则在中,由余弦定理得故答案为.点睛:解三角形的应用问题,先将实际问题抽象成三角形问题,再合理选择三角形以及正、余弦定理进行计算.16、【解析】

根据共轭复数的表示方法算出即可.【详解】由,则,所以故答案为:【点睛】本题主要考查共轭复数的概念,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)若取出的红球的个数不少于白球的个数,则有红、红白、红白三种情况,然后利用分类计数原理可得出答案;(2)若取出的球的总分不少于分,则有红、红白、红白和红白四种情况,然后利用分类计数原理可得出答案.【详解】(1)若取出的红球个数不少于白球个数,则有红、红白、红白三种情况,其中红有种取法,红白有种取法,红白有种取法.因此,共有种不同的取法;(2)若取出的个球的总分不少于分,则有红、红白、红白和红白四种情况.其中红有种取法,红白有种取法,红白有种取法,红白有种不同的取法.因此,共有种不同的取法.【点睛】本题考查分类加法计数原理应用,在解题时要熟练利用分类讨论思想,遵循不重不漏的原则,考查运算求解能力,属于中等题.18、(1)或.(2)【解析】

(1)根据正弦定理,求得,进而可求解角B的大小;(2)根据三角函数的基本关系式,求得,利用三角形的面积公式和余弦定理,即可求解。【详解】(1)根据正弦定理得,.,,或.(2),且,.,,.由正弦定理,得.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.其中在中,通常涉及三边三角,知三(除已知三角外)求三,可解出三角形,当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.19、(1)证明见解析.(2).【解析】试题分析:(1)先根据平几知识计算得,再根据线面垂直判定定理得结论,(2)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得平面法向量,利用向量数量积得向量夹角,最后根据线面角与向量夹角互余关系求结果.试题解析:(1)证明:等腰梯形中,故在中,,所以平面(2)作于,以为轴建立如图的空间直角坐标系,则求得平面的法向量为又,所以即与平面所成角的正弦值等于20、(1)填表见解析(2)能在犯错误的概率不超过0.005的前提下认为玩手机对学习有影响(3)见解析【解析】

(1)由题意30人中,不玩手机的人数为10,由题意能将2×2列联表补充完整.(2)求出K210>7.879,从而能在犯错误的概率不超过0.005的前提下认为玩手机对学习有影响.(3)由题意得X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和E(X).【详解】(1)由题意30人中,不玩手机的人数为:3010,由题意将2×2列联表补充完整如下:玩手机不玩手机合计学习成绩优秀4812学习成绩不优秀16218合计201030(2)K210>7.879,∴能在犯错误的概率不超过0.005的前提下认为玩手机对学习有影响.(3)由题意得X的可能取值为0,1,2,P(X=0),P(X=1),P(X=2),∴X的分布列为:X012P∴E(X)=01.【点睛】本题考查独立性检验的应用,考查概率、离散型随机变量的分布列及数学期望的求法及应用,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.21、(Ⅰ)2;(Ⅱ).【解析】分析:(1)根据图像过点求得参数值;(2)原不等式等价于,)恒成立,根据单调性求得最值即可.详解:(Ⅰ),,或,,(舍去),.(Ⅱ),,,,则,,.则.点睛:函数题目经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).22、(I)详见解析;(II)a=3;(III)a>【解析】

(I)利用导函数求出函数y=f(x)在点(1,f(1))处的切线方程,和函数y=g(x)联立后由判别式分析求解公共点个数;(II)写出函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论