广东省深圳高级中学2022-2023学年数学高二第二学期期末经典模拟试题含解析_第1页
广东省深圳高级中学2022-2023学年数学高二第二学期期末经典模拟试题含解析_第2页
广东省深圳高级中学2022-2023学年数学高二第二学期期末经典模拟试题含解析_第3页
广东省深圳高级中学2022-2023学年数学高二第二学期期末经典模拟试题含解析_第4页
广东省深圳高级中学2022-2023学年数学高二第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列四个命题中,真命题的个数是()①命题“若,则”;②命题“且为真,则有且只有一个为真命题”;③命题“所有幂函数的图象经过点”;④命题“已知是的充分不必要条件”.A.1 B.2 C.3 D.42.下列点不在直线(t为参数)上的是()A.(-1,2) B.(2,-1)C.(3,-2) D.(-3,2)3.下列三句话按“三段论”模式排列顺序正确的是()①是周期函数;②三角函数是周期函数;③是三角函数A.②③① B.②①③ C.①②③ D.③②①4.设在定义在上的偶函数,且,若在区间单调递减,则()A.在区间单调递减 B.在区间单调递增C.在区间单调递减 D.在区间单调递增5.盒中有只螺丝钉,其中有只是不合格的,现从盒中随机地取出只,那么恰有只不合格的概率是()A. B. C. D.6.设,,若,则实数的取值范围是()A. B. C. D.7.关于“斜二测”画图法,下列说法不正确的是()A.平行直线的斜二测图仍是平行直线B.斜二测图中,互相平行的任意两条线段的长度之比保持原比例不变C.正三角形的直观图一定为等腰三角形D.在画直观图时,由于坐标轴的选取不同,所得的直观图可能不同8.某人射击一次命中目标的概率为,且每次射击相互独立,则此人射击7次,有4次命中且恰有3次连续命中的概率为()A. B. C. D.9.已知函数在定义域上有两个极值点,则的取值范围是()A. B. C. D.10.中,角A,B,C的对边分别是a,b,c,已知,则A=A. B. C. D.11.已知等差数列的等差,且成等比数列,若,为数列的前项和,则的最小值为()A.3 B.4 C. D.12.在上单调递增,则实数的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.高二(1)班有男生18人,女生12人,现用分层抽样的方法从该班的全体同学中抽取一个容量为5的样本,则抽取的男生人数为____.14.如图,已知正方体的棱长为2,E,F分别为棱的中点,则四棱锥的体积为__________.15.如图,正方体中,E为线段的中点,则AE与所成角的余弦值为____.16.若,,则实数的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)1,4,9,16……这些数可以用图1中的点阵表示,古希腊毕达哥拉斯学派将其称为正方形数,记第个数为.在图2的杨辉三角中,第行是展开式的二项式系数,,…,,记杨辉三角的前行所有数之和为.(1)求和的通项公式;(2)当时,比较与的大小,并加以证明.18.(12分)已知函数(1)若当时,恒成立,求实数的取值范围.(2)设,求证:当时,.19.(12分)设函数,.(1)若,求不等式的解集;(2)若关于的不等式对任意的恒有解,求的取值范围.20.(12分)为了调查我市在校中学生参加体育运动的情况,从中随机抽取了16名男同学和14名女同学,调查发现,男、女同学中分别有12人和6人喜爱运动,其余不喜爱.(1)根据以上数据完成以下列联表:(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.010的前提下认为性别与喜爱运动有关?(3)将以上统计结果中的频率视作概率,从我市中学生中随机抽取3人,若其中喜爱运动的人数为,求的分布列和均值.参考数据:21.(12分)已知函数.(1)当时,求函数的值域;(2)如果对任意的,不等式恒成立,求实数的取值范围.22.(10分)已知函数,为自然对数的底数.(1)求曲线在处的切线方程;(2)求函数的单调区间与极值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

①令,研究其单调性判断.②根据“且”构成的复合命题定义判断.③根据幂函数的图象判断.④由,判断充分性,取特殊值判断必要性.【详解】①令,,所以在上递增所以,所以,故正确.②若且为真,则都为真命题,故错误.③因为所有幂函数的图象经过点,故正确.④因为,所以,故充分性成立,当时,推不出,所以不必要,故正确.故选:C【点睛】本题主要考查命题的真假判断,还考查了理解辨析的能力,属于基础题.2、D【解析】

先求出直线l的普通方程,再把点的坐标代入检验,满足则在直线l上,否则不在.【详解】直线l的普通方程为x+y-1=0,因此点(-3,2)的坐标不适合方程x+y-1=0.故答案为D【点睛】(1)本题主要考查参数方程和普通方程的互化,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)参数方程消参常用的方法有三种:加减消参、代入消参、恒等式消参法.3、A【解析】

根据“三段论”的排列模式:“大前提”“小前提”“结论”,分析即可得到正确的顺序.【详解】根据“三段论”的排列模式:“大前提”“小前提”“结论”,可知:①是周期函数是“结论”;②三角函数是周期函数是“大前提”;③是三角函数是“小前提”;故“三段论”模式排列顺序为②③①.故选:A【点睛】本题考查了演绎推理的模式,需理解演绎推理的概念,属于基础题.4、D【解析】

根据题设条件得到函数是以2为周期的周期函数,同时关于对称的偶函数,根据对称性和周期性,即可求解.【详解】由函数满足,所以是周期为2的周期函数,由函数在区间单调递减,可得单调递减,所以B不正确;由函数在定义在上的偶函数,在区间单调递减,可得在区间单调递增,所以A不正确;又由函数在定义在上的偶函数,则,即,所以函数的图象关于对称,可得在区间单调递增,在在区间单调递增,所以C不正确,D正确,故选D.【点睛】本题主要考查了函数的单调性与对称性的应用,以及函数的周期性的判定,着重考查了推理与运算能力,属于基础题.5、A【解析】分析:利用古典概型求恰有只不合格的概率.详解:由古典概型公式得故答案为:A.点睛:(1)本题主要考查古典概型,意在考查学生对该知识的掌握水平.(2)古典概型的解题步骤:①求出试验的总的基本事件数;②求出事件A所包含的基本事件数;③代公式=.6、C【解析】

分别求解出集合和,根据交集的结果可确定的范围.【详解】,本题正确选项:【点睛】本题考查根据交集的结果求解参数范围的问题,属于基础题.7、C【解析】

根据斜二测画法的特征,对选项中的命题进行分析、判断正误即可.【详解】解:对于A,平行直线的斜二测图仍是平行直线,A正确;对于B,斜二测图中,互相平行的任意两条线段的长度之比保持原比例不变,B正确;对于C,正三角形的直观图不一定为等腰三角形,如图所示;∴C错误;对于D,画直观图时,由于坐标轴的选取不同,所得的直观图可能不同,D正确.故选:C.【点睛】本题考查了斜二测画法的特征与应用问题,是基础题.8、B【解析】

由于射击一次命中目标的概率为,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果.【详解】因为射击7次有4次命中且恰有3次连续命中有种情况,所以所求概率为.选B.【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.9、B【解析】

根据等价转化的思想,可得在定义域中有两个不同的实数根,然后利用根的分布情况,可得,最后利用导数判断单调性,可得结果.【详解】令,依题意得方程有两个不等正根,,则,,令,在上单调递减,,故的取值范围是,故选:B【点睛】本题考查根据函数极值点求参数,还考查二次函数根的分布问题,难点在于使用等价转化的思想,化繁为简,属中档题.10、C【解析】试题分析:由余弦定理得:,因为,所以,因为,所以,因为,所以,故选C.【考点】余弦定理【名师点睛】本题主要考查余弦定理的应用、同角三角函数的基本关系,是高考常考知识内容.本题难度较小,解答此类问题,注重边角的相互转换是关键,本题能较好地考查考生分析问题、解决问题的能力及基本计算能力等.11、B【解析】

由题意得(1+2d)2=1+12d,求出公差d的值,得到数列{an}的通项公式,前n项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.【详解】∵a1=1,a1、a3、a13成等比数列,∴(1+2d)2=1+12d.得d=2或d=0(舍去),∴an=2n﹣1,∴Snn2,∴.令t=n+1,则t2≥6﹣2=1当且仅当t=3,即n=2时,∴的最小值为1.故选:B.【点睛】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.12、D【解析】

利用函数在连续可导且单调递增,可得导函数在大于等于0恒成立即可得到的取值范围.【详解】因为函数在连续可导且单调递增,所以在恒成立,分离参数得恒成立,即,故选D.【点睛】本题考查函数在区间内单调递增等价于在该区间内恒成立.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】

根据分层抽样的比例求得.【详解】由分层抽样得抽取男生的人数为5×18故得解.【点睛】本题考查分层抽样,属于基础题.14、【解析】

由题意可得,再利用三棱锥的体积公式进行计算即可.【详解】由已知得,,,四边形是菱形,所以.【点睛】本题考查几何体的体积,解题的关键是把四棱锥的体积转化为两个三棱锥的体积,属于基础题.15、;【解析】

以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出AE与CD1所成角的余弦值.【详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,则A(2,0,0),E(2,2,1),C(0,2,0),D1(0,0,2),(0,2,1),(0,﹣2,2),设AE与CD1所成角为θ,则cosθ,∴AE与CD1所成角的余弦值为.故答案为.【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.16、【解析】当m=0时,符合题意.当m≠0时,,则0<m<4,则0⩽m<4答案为:.点睛:解本题的关键是处理二次函数在区间上大于0的恒成立问题,对于二次函数的研究一般从以几个方面研究:一是,开口;二是,对称轴,主要讨论对称轴与区间的位置关系;三是,判别式,决定于x轴的交点个数;四是,区间端点值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ),(Ⅱ),证明见解析【解析】

(Ⅰ)由正方形数的特点知,由二项式定理的性质,求出杨辉三角形第行个数的和,由此能求出和的通项公式;(Ⅱ)由时,,时,,证明:时,时,可以逐个验证;证明时,时,可以用数学归纳法证明.【详解】(Ⅰ)由正方形数的特点可知;由二项式定理的性质,杨辉三角第行个数的和为,所以.(Ⅱ),,所以;,,所以;,,所以;,,所以;,所以;猜想:当时,;当时,.证明如下:证法1:当时,已证.下面用数学归纳法证明:当时,.①当时,已证:②假设时,猜想成立,即,所以;那么,,所以,当时,猜想也成立.根据①②,可知当时,.【点睛】本题主要考查了数列的通项公式的求法,以及数学归纳法不等式的证明,其中解答中要认真审题,注意二项式定理和数学归纳法的合理运用,着重考查了推理与运算能力,属于中档试题.18、(1);(2)证明见解析【解析】

(1)解法一:求得函数导数并通分,对分成两种情况,结合函数的单调性、最值,求得实数的取值范围.解法二:将原不等式分离常数,得到,构造函数,利用导数结合洛必达法则,求得的取值范围,由此求得的取值范围.(2)解法一:先由(1)的结论,证得当时成立.再利用导数证得当时,也成立,由此证得不等式成立.解法二:将所要证明的不等式等价转化为,构造函数,利用导数证得,进而证得,也即证得.【详解】解:(1)【解法一】由得:①当时,由知,在区间上为增函数,当时,恒成立,所以当时,满足题意;②当时,在区间上是减函数,在区间上是增函数.这时当时,,令,则即在上为减函数,所以即在上的最小值,此时,当时,不可能恒成立,即有不满足题意.综上可知,当,使恒成立时,的取值范围是.【解法二】当时,等价于令,则只须使设在上为增函数,所以在上为增函数,当时,由洛必达法则知即当时,,所以有即当,使恒成立时,则的取值范围是(2)解法一:由(1)知,当时,当时,又成立故只须在证明,当时,即可当时,又当时,所以,只须证明即可;设由得:当,时当时,即在区间上为增函数,在区间上为减函数,当时,成立综上可知,当时,成立.(2)解法二:由(1)知当时,等价于设由得:当时,;当时,即在区间上为增函数,在区间上为减函数,当时,因为时,.所以所以成立.综上可知,当时,成立.【点睛】本小题主要考查利用导数研究不等式恒成立问题,考查利用导数证明不等式,考查分类讨论的数学思想,考查化归与转化的数学思想方法,难度较大,属于难题.19、(1)(2)【解析】分析:(1)当时,,据此零点分段可得不等式的解集为.(2)由二次函数的性质可知,由绝对值三角不等式的性质可得.据此可得的取值范围是.详解:(1)因为,所以,当时,,即,所以,当时,,即,所以,当时,,即,所以,综上所述,原不等式的解集是.(2),.因为关于的不等式对任意的恒有解.所以,解得.点睛:绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.20、(1)见解析;(2)见解析;(3)见解析【解析】分析:(1)本题是一个简单的数字的运算,根据a,b,c,d的已知和未知的结果,做出空格处的结果;(2)假设是否喜爱运动与性别无关,由已知数据可求得观测值,把求得的观测值同临界值进行比较,得到在犯错的概率不超过0.10的前提下不能判断喜爱运动与性别有关;(3)喜爱运动的人数为ξ,ξ的取值分别为0,1,2,3,结合变量对应的事件利用等可能事件的概率公式做出概率,写出分布列和期望.详解:(1)(2)假设:是否喜爱运动与性别无关,由已知数据可求得,因此,在犯错的概率不超过0.10的前提下不能判断喜爱运动与性别有关.(3)统计结果中喜爱运动的中学生所占的频率为.喜爱运动的人数为的取值分别为:0,1,2,3,则有:喜爱运动的人数为的分布列为:因为,所以喜爱运动的人数的值为.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布则此随机变量的期望可直接利用这种典型分布的期望公式求得.21、(1);

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论