版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若是虚数单位,,则实数()A. B. C.2 D.32.箱子中有标号为1,2,3,4,5,6且大小、形状完全相同的6个球,从箱子中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.若有4人参与摸奖,则恰好有3人获奖的概率为()A.16625 B.96625 C.6243.用数学归纳法证明不等式“(,)”的过程中,由推导时,不等式的左边增加的式子是()A. B.C. D.4.如图1为某省2019年1~4月快递义务量统计图,图2是该省2019年1~4月快递业务收入统计图,下列对统计图理解错误的是()A.2019年1~4月的业务量,3月最高,2月最低,差值接近2000万件B.2019年1~4月的业务量同比增长率超过50%,在3月最高C.从两图来看2019年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D.从1~4月来看,该省在2019年快递业务收入同比增长率逐月增长5.设随机变量服从正态分布,若,则函数有极值点的概率为()A.0.2 B.0.3 C.0.4 D.0.56.已知抛物线的焦点为F,过点F分别作两条直线,直线与抛物线C交于两点,直线与抛物线C交于点,若与直线的斜率的乘积为,则的最小值为()A.14 B.16 C.18 D.207.若复数满足,则在复平面内,对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.某市践行“干部村村行”活动,现有3名干部甲、乙、丙可供选派,下乡到5个村蹲点指导工作,每个村至少有1名干部,每个干部至多住3个村,则干部甲住3个村的概率为()A. B. C. D.9.已知随机变量服从二项分布,且,则()A. B. C. D.10.一个三棱锥的正视图和侧视图如图所示(均为真角三角形),则该三棱锥的体积为()A.4 B.8 C.16 D.2411.设为虚数单位,复数满足,则A.1 B. C.2 D.12.为了了解手机品牌的选择是否和年龄的大小有关,随机抽取部分华为手机使用者和苹果机使用者进行统计,统计结果如下表:年龄手机品牌华为苹果合计30岁以上40206030岁以下(含30岁)152540合计5545100附:P()0.100.050.0100.0012.7063.8416.63510.828根据表格计算得的观测值,据此判断下列结论正确的是()A.没有任何把握认为“手机品牌的选择与年龄大小有关”B.可以在犯错误的概率不超过0.001的前提下认为“手机品牌的选择与年龄大小有关”C.可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小有关”D.可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小无关”二、填空题:本题共4小题,每小题5分,共20分。13.在棱长为1的正方体中,点是对角线上的动点(点与不重合),则下列结论正确的是____.①存在点,使得平面平面;②存在点,使得平面;③的面积不可能等于;④若分别是在平面与平面的正投影的面积,则存在点,使得.14.若的展开式中第项与第项的二项式系数相等,则该展开式中的系数__.15.已知函数在处切线方程为,若对恒成立,则_________.16.随机变量X服从于正态分布N(2,σ2)若P(X≤0)=a,则P(2<X<4)=_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知不等式.(1)当时,求不等式的解集;(2)若不等式的解集为,求的范围.18.(12分)已知函数f(x)=xlnx,(I)判断曲线y=f(x)在点1,f(1)处的切线与曲线y=g(x)的公共点个数;(II)若函数y=f(x)-g(x)有且仅有一个零点,求a的值;(III)若函数y=f(x)+g(x)有两个极值点x1,x2,且19.(12分)在的展开式中,求:(1)第3项的二项式系数及系数;(2)含的项.20.(12分)某球员是当今国内最好的球员之一,在赛季常规赛中,场均得分达分。分球和分球命中率分别为和,罚球命中率为.一场比赛分为一、二、三、四节,在某场比赛中该球员每节出手投分的次数分别是,,,,每节出手投三分的次数分别是,,,,罚球次数分别是,,,(罚球一次命中记分)。(1)估计该球员在这场比赛中的得分(精确到整数);(2)求该球员这场比赛四节都能投中三分球的概率;(3)设该球员这场比赛中最后一节的得分为,求的分布列和数学期望。21.(12分)已知函数(是自然对数的底数).(1)当时,求函数在上的最大值和最小值;(2)当时,讨论函数的单调性.22.(10分)选修4-5:不等式选讲已知函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)当不等式的解集为时,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
先利用复数的模长公式得到,再根据复数相等的定义,即得解.【详解】由于由复数相等的定义,故选:B【点睛】本题考查了复数的模长和复数相等的概念,考查了学生概念理解,数学运算的能力,属于基础题.2、B【解析】获奖的概率为p=6C62=25,记获奖的人数为ξ,ξ~B(4,3、D【解析】
把用替换后两者比较可知增加的式子.【详解】当时,左边,当时,左边,所以由推导时,不等式的左边增加的式子是,故选:D.【点睛】本题考查数学归纳法,掌握数学归纳法的概念是解题基础.从到时,式子的变化是数学归纳法的关键.4、D【解析】
由题意结合所给的统计图确定选项中的说法是否正确即可.【详解】对于选项A:2018年1~4月的业务量,3月最高,2月最低,差值为,接近2000万件,所以A是正确的;对于选项B:2018年1~4月的业务量同比增长率分别为,均超过,在3月最高,所以B是正确的;对于选项C:2月份业务量同比增长率为53%,而收入的同比增长率为30%,所以C是正确的;对于选项D,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D错误.本题选择D选项.【点睛】本题主要考查统计图及其应用,新知识的应用等知识,意在考查学生的转化能力和计算求解能力.5、C【解析】分析:函数有极值点,则有解,可得的取值范围,再根据随机变量服从正态分布,可得曲线关于直线对称,从而可得结论.详解:函数有极值点,有解,,,随机变量服从正态分布,若,.故选:C.点睛:本题考查函数的极值点,考查正态分布曲线的对称性,同时考查运算求解的能力,属于中档题.6、B【解析】
设出直线的斜率,得到的斜率,写出直线的方程,联立直线方程和抛物线方程,根据弦长公式求得的值,进而求得最小值.【详解】抛物线的焦点坐标为,依题意可知斜率存在且不为零,设直线的斜率为,则直线的斜率为,所以,有,有,,故,同理可求得.故,当且仅当时,等号成立,故最小值为,故选B.【点睛】本小题主要考查直线和抛物线的位置关系,考查直线和抛物线相交所得弦长公式,考查利用基本不等式求最小值,属于中档题.7、A【解析】
由题先解出,再利用来判断位置【详解】,在复平面对应的点为,即在第一象限,故选A【点睛】本题考查复数的除法,复数的概念及几何意义,是基础题.8、A【解析】
先利用排列组合思想求出甲干部住个村的排法种数以及将三名可供选派的干部下乡到个村蹲点的排法种数,最后利用古典概型的概率公式求出所求事件的概率。【详解】三名干部全部选派下乡到个村蹲点,三名干部所住的村的数目可以分别是、、或、、,排法种数为,甲住个村,则乙、丙各住一个村,排法种数为,由古典概型的概率公式可知,所求事件的概率为,故选:A。【点睛】本题考查排列组合应用问题以及古典概型概率的计算,解决本题的关键在于将所有的基本事件数利用排列组合思想求出来,合理利用分类计数和分步计算原理,考查分析问题和运算求解能力,属于中等题。9、A【解析】
由二项分布与次独立重复实验的模型得:,,则,得解.【详解】因为服从二项分布,,,所以,,即,,则,故选:A.【点睛】本题考查二项分布与次独立重复实验的模型,属于基础题.10、B【解析】
根据三视图知,三棱锥的一条长为6的侧棱与底面垂直,底面是直角边为2、4的直角三角形,利用棱锥的体积公式计算即可.【详解】由三视图知三棱锥的侧棱与底垂直,其直观图如图,可得其俯视图是直角三角形,直角边长为2,4,,棱锥的体积,故选B.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于中档题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.11、B【解析】
利用复数代数形式的乘除运算,再由复数的模的计算公式求解即可.【详解】由,得,,故选.【点睛】本题主要考查复数代数形式的乘除运算以及复数的模的计算.12、C【解析】
根据的意义判断.【详解】因为,所以可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小有关”,故选:C.【点睛】本题考查独立性检验,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、①②④【解析】
逐项分析.【详解】①如图当是中点时,可知也是中点且,,,所以平面,所以,同理可知,且,所以平面,又平面,所以平面平面,故正确;②如图取靠近的一个三等分点记为,记,,因为,所以,所以为靠近的一个三等分点,则为中点,又为中点,所以,且,,,所以平面平面,且平面,所以平面,故正确;③如图作,在中根据等面积得:,根据对称性可知:,又,所以是等腰三角形,则,故错误;④如图设,在平面内的正投影为,在平面内的正投影为,所以,,当时,解得:,故正确.故填:①②④.【点睛】本题考查立体几何的综合问题,难度较难.对于判断是否存在满足垂直或者平行的位置关系,可通过对特殊位置进行分析得到结论,一般优先考虑中点、三等分点;同时计算线段上动点是否满足一些情况时,可以设动点和线段某一端点组成的线段与整个线段长度的比值为,然后统一未知数去分析问题.14、56【解析】试题分析:首先根据已知展开式中第3项与第7项的二项式系数相等得;然后写出其展开式的通项,令即可求出展开式中的系数.考点:二项式定理.15、【解析】
先求出切线方程,则可得到,令,从而转化为在R上恒为增函数,利用导函数研究单调性即可得到答案.【详解】根据题意得,故切线方程为,即,令,此时,由于对恒成立,转化为,则在R上恒为增函数,,此时,而,当时,,当时,,于是在处取得极小值,此时,而在R上恒为增函数等价于在R上恒成立,即即可,由于为极小值,则此时只能,故答案为2.【点睛】本题主要考查导函数的几何意义,利用导函数求函数极值,意在考查学生的分析能力,转化能力,计算能力,难度思维较大.16、【解析】
利用正态分布的对称性,求得的值.【详解】由条件知,故.【点睛】本小题主要考查正态分布在指定区间的概率,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)是【解析】试题分析:(1)由题意,根据两个绝对值式的零点,对的取值范围进行分段求解,综合所有情况,从而可得不等式的解;(2)由不等式的解集为,由(1)作函数图形,结合图形,可直线斜率,从而可求出实数的取值范围,由此问题可得解.试题解析:(1)由已知,可得当时,若,则,解得若,则,解得若,则,解得综上得,所求不等式的解集为;(2)不妨设函数,则其过定点,如图所示,由(1)可得点,由此可得,即.所以,所求实数的范围为.18、(I)详见解析;(II)a=3;(III)a>【解析】
(I)利用导函数求出函数y=f(x)在点(1,f(1))处的切线方程,和函数y=g(x)联立后由判别式分析求解公共点个数;(II)写出函数y=f(x)-g(x)表达式,由y=0得到a=x+2x+lnx,求函数h(x)=x+(III)写出函数y=f(x)+g(x)的表达式,构造辅助函数t(x)=-x2+ax-2+xlnx,由原函数的极值点是其导函数的零点分析导函数对应方程根的情况,分离参数a后构造新的辅助函数,求函数的最小值,然后分析当a大于函数最小值的情况,进一步求出当x【详解】解:(I)由f(x)=xlnx,得f'(x)=lnx+1,∴f'(1)=1,又f(1)=0,∴曲线y=f(x)在点(1,f(1))处的切线方程为y=x-1,代入y=-x2+ax-2∴当a<-1或a>3时,△=(1-a)当a=-1或a=3时,△=(1-a)当-1<a<3时,△=(1-a)(II)y=f(x)-g(x)=x由y=0,得a=x+2令h(x)=x+2x+lnx∴h(x)在(0,1)上递减,在(1,+∞)上递增,因此,hmin(x)=h(1)(III)y=f(x)+g(x)=-x令t(x)=-x∴t'(x)=-2x+a+1+lnx,即a=2x-1-lnx有两个不同的根x1,x令λ(x)=2x-1-lnx⇒λ且当a>ln2时,(x2-当x2a=2x∴x此时a=2ln2即x2a>2ln2【点睛】本题考查了利用导数研究曲线上某点处的切线方程,考查了函数零点的求法,考查了利用导数求函数的最值,充分利用了数学转化思想方法,考查了学生灵活处理问题和解决问题的能力,是难度较大的题目.19、(1)第3项的系数为24=240.(2)含x2的项为第2项,且T2=-192x2.【解析】试题分析:(1)根据二项展开式的通项,即可求解第项的二项式系数及系数;(2)由二项展开式的痛项,可得当时,即可得到含的系数.试题解析:(1)第3项的二项式系数为C=15,又T3=C(2)42=24·Cx,所以第3项的系数为24C=240.(2)Tk+1=C(2)6-kk=(-1)k26-kCx3-k,令3-k=2,得k=1.所以含x2的项为第2项,且T2=-192x2.20、(1)分;(2);(3)见解析.【解析】
(1)分别估算分得分、分得分和罚球得分,加和得到结果;(2)分别计算各节能投中分球的概率,相乘得到所求概率;(3)确定所有可能取值为,分别计算每个取值对应的概率,从而得到分布列;利用数学期望计算公式求得期望.【详解】(1)估
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 分物游戏(说课稿)-2024-2025学年二年级上册数学北师大版
- 二零二五年度建筑工程安全生产环保验收合同3篇
- 全国人教版初中信息技术七年级上册第四单元第13课七、《插入更新日期》说课稿
- 山东省泰安市肥城市2024-2025学年六年级上学期末考试道德与法治试题(含答案)
- 200万套基于AI大模型的新能源汽车热泵空调部件柔性制造智能工厂项目可行性研究报告写作模板-申批备案
- Unit6 Meet my family B Lets talk Lets learn(说课稿)-2024-2025学年人教PEP版英语四年级上册
- 河南省信阳市浉河区2024-2025学年三年级上学期期末学业质量监测数学试题参考答案
- 湖南省娄底市(2024年-2025年小学六年级语文)部编版阶段练习(上学期)试卷及答案
- 贵州盛华职业学院《建筑设备(暖通空调)》2023-2024学年第一学期期末试卷
- 贵州轻工职业技术学院《医疗诊断前沿技术与创新应用》2023-2024学年第一学期期末试卷
- 2024年北师大版四年级数学上学期学业水平测试 期末卷(含答案)
- 2024年高考物理一轮复习讲义(新人教版):第七章动量守恒定律
- 浙江省宁波市慈溪市2023-2024学年高三上学期语文期末测试试卷
- 草学类专业生涯发展展示
- 法理学课件马工程
- 《玉米种植技术》课件
- 第47届世界技能大赛江苏省选拔赛计算机软件测试项目技术工作文件
- 2023年湖北省公务员录用考试《行测》答案解析
- M200a电路分析(电源、蓝牙、FM)
- 2024-2030年全球及中国洞察引擎行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 建筑工程施工图设计文件审查办法
评论
0/150
提交评论