版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,若,则()A. B. C. D.2.若命题是真命题,则实数a的取值范围是A. B.C. D.3.展开式中x2的系数为()A.15 B.60 C.120 D.2404.已知复数z满足(i为虚数单位),则复数z在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知复数满足(为虚数单位),则共轭复数等于()A. B. C. D.6.已知函数,若有两个极值点,,且,则的取值范围是()A. B. C. D.7.如图所示,从甲地到乙地有3条公路可走,从乙地到丙地有2条公路可走,从甲地不经过乙地到丙地有2条水路可走.则从甲地经乙地到丙地和从甲地到丙地的走法种数分别为(
)A.6,8 B.6,6 C.5,2 D.6,28.如下图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为36,则称该图形是“和谐图形”,已知其中四个三角形上的数字之和为二项式的展开式的各项系数之和.现从0,1,2,3,4,5中任取两个不同的数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为()A. B. C. D.9.下列说法:①将一组数据中的每个数据都乘以同一个非零常数后,标准差也变为原来的倍;②设有一个回归方程,变量增加个单位时,平均减少个单位;③线性相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱;④在某项测量中,测量结果服从正态分布,若位于区域的概率为,则位于区域内的概率为⑤在线性回归分析中,为的模型比为的模型拟合的效果好;其中正确的个数是()A.1 B.2 C.3 D.410.用数学归纳法证明不等式:,则从到时,左边应添加的项为()A. B.C. D.11.已知向量,,则向量在向量上的投影是()A.2 B.1 C.−1 D.−212.执行如图所示的程序框图,则输出S的值为()A. B.2 C.-3 D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数有且只有一个零点,是上两个动点(为坐标原点),且,若两点到直线的距离分别为,则的最大值为__________.14.已知函数为的极值点,则关于的不等式的解集为________.15.已知函数,.则函数f(x)的最小正周期_______16.已知双曲线:的右焦点到渐近线的距离为4,且在双曲线上到的距离为2的点有且仅有1个,则这个点到双曲线的左焦点的距离为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的角、、所对的边分别是、、,设向量,,.(1)若,求证:为等腰三角形;(2)若,边长,角,求的面积.18.(12分)从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则实验结束(1)求第一次实验恰好摸到1个红球和1个白球的概率;(2)记实验次数为X,求X的分布列及数学期望.19.(12分)已知函数.(1)当时,求不等式的解集;(2)若不等式的解集包含,求的取值范围.20.(12分)设函数.(1)求的单调区间;(2)若对任意的都有恒成立,求实数的取值范围.21.(12分)已知函数,当时,函数有极小值.(1)求的解析式;(2)求在上的值域.22.(10分)7名同学,在下列情况下,各有多少种不同安排方法?(答案以数字呈现)(1)7人排成一排,甲不排头,也不排尾.(2)7人排成一排,甲、乙、丙三人必须在一起.(3)7人排成一排,甲、乙、丙三人两两不相邻.(4)7人排成一排,甲、乙、丙三人按从高到矮,自左向右的顺序(不一定相邻).(5)7人分成2人,2人,3人三个小组安排到甲、乙、丙三地实习.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:先根据得到=1即得a=2,再根据求出b的值,再求则.详解:因为,所以=1,所以a=2.又因为,所以b=1,所以Q={2,1},所以.故答案为:B.点睛:(1)本题主要考查集合的交集补集运算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答集合中的参数问题,要注意检验,一是检验是否满足集合元素的互异性,二是检验是否满足每一个条件.2、B【解析】因为命题是真命题,即不等式对恒成立,即恒成立,当a+2=0时,不符合题意,故有,即,解得,则实数a的取值范围是.故选:B.3、B【解析】
∵展开式的通项为,令6-r=2得r=4,∴展开式中x2项为,所以其系数为60,故选B4、A【解析】
算出后可得其对应的点所处的象限.【详解】因为,故,其对应的点为,它在第一象限,故选A.【点睛】本题考查复数的除法及复数的几何意义,属于基础题.5、D【解析】试题分析:由题意得考点:复数运算6、C【解析】
由可得,根据极值点可知有两根,等价于与交于两点,利用导数可求得的最大值,同时根据的大小关系构造方程可求得临界状态时的取值,结合单调性可确定的取值范围.【详解】,,令可得:.有两个极值点,有两根令,则,当时,;当时,,在上单调递增,在上单调递减,,令,则,解得:,此时.有两根等价于与交于两点,,即的取值范围为.故选:.【点睛】本题考查根据函数极值点个数及大小关系求解参数范围的问题,关键是明确极值点和函数导数之间的关系,将问题转化为直线与曲线交点问题的求解.7、A【解析】
根据题意,应用乘原理,即可求解甲地经乙地到丙地的走法的种数,再由加法原理,即可得到甲地到丙地的所有走法的种数.【详解】由题意,从甲地经乙地到丙地的走法,根据分步乘法计数原理可得,共有种;再由分类加法计数原理,可得从甲地到丙地,共有种走法,故选:A.【点睛】本题主要考查了分类加法计数原理和分步乘法计数原理的应用问题,其中正确理解题意,合理选择计数原理是解答的关键,着重考查了分析问题和解答问题的能力.8、B【解析】
先求得二项式的展开式的各项系数之和为.然后利用列举法求得在一共个数字中任选两个,和为的概率,由此得出正确选项.【详解】令代入得,即二项式的展开式的各项系数之和为.从0,1,2,3,4,5中任取两个不同的数字方法有:共种,其中和为的有共两种,所以恰好使该图形为“和谐图形”的概率为,故选B.【点睛】本小题主要考查二项式展开式各项系数之和,考查列举法求古典概型概率问题,属于基础题.9、B【解析】
逐个分析,判断正误.①将一组数据中的每个数据都乘以同一个非零常数后,标准差变为原来的倍;②设有一个回归方程,变量增加个单位时,平均减少个单位;③线性相关系数越大,两个变量的线性相关性越强;线性相关系数越接近于,两个变量的线性相关性越弱;④服从正态分布,则位于区域内的概率为;⑤在线性回归分析中,为的模型比为的模型拟合的效果好.【详解】①将一组数据中的每个数据都乘以同一个非零常数后,标准差变为原来的倍,错误;②设有一个回归方程,变量增加个单位时,平均减少个单位,正确;③线性相关系数越大,两个变量的线性相关性越强;线性相关系数越接近于,两个变量的线性相关性越弱,③错误;④服从正态分布,则位于区域内的概率为,④错误;⑤在线性回归分析中,为的模型比为的模型拟合的效果好;正确故选B.【点睛】本题考查的知识点有标准差,线性回归方程,相关系数,正态分布等,比较综合,属于基础题.10、D【解析】
将和式子表示出来,相减得到答案.【详解】时:时:观察知:应添加的项为答案选D【点睛】本题考查了数学归纳法,写出式子观察对应项是解题的关键.11、D【解析】
本题考察的是对投影的理解,一个向量在另一个向量上的投影即一个投影在另一个投影方向上的长度.【详解】在上的投影方向相反,长度为2,所以答案是.【点睛】本题可以通过作图来得出答案.12、A【解析】
模拟执行程序框图,依次写出每次循环得到、的值,可得答案【详解】第1次执行循环体后:,;第2次执行循环体后:,;第3次执行循环体后:,;第4次执行循环体后:,;经过4次循环后,可以得到周期为4,因为,所以输出的值为,故选A.【点睛】本题考查程序框图的问题,本题解题的关键是找出循环的周期,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据函数的奇偶性先求解出的值,然后根据判断出中点的轨迹,再根据转化关系将的最大值转化为圆上点到直线的距离最大值,由此求解出结果.【详解】因为的定义域为,且,所以是偶函数,又因为有唯一零点,所以,所以,所以,因为,所以,所以,所以,设的中点为,,如下图所示:所以,又因为,所以,所以的轨迹是以坐标原点为圆心,半径为的圆,所以当取最大值时,为过垂直于的线段与的交点,所以,所以.故答案为:.【点睛】本题考查函数奇偶性、圆中的轨迹方程、圆上点到直线的距离最值,属于综合型题型,难度较难.圆上点到一条与圆相离直线的距离最值求解方法:先计算出圆心到直线的距离,则距离最大值为,距离最小值为.14、【解析】
首先利用为的极值点求出参数,然后利用符号法则解分式不等式即可。【详解】,由题意,,经检验,当时,为的极值点.所以.或,的解集为.【点睛】本题主要考查导数在函数中的应用,以及分式不等式的解法,意在考查学生的数学运算能力。15、【解析】
首先根据二倍角公式先化简以及辅助角公式化简,再根据即可。【详解】由题意得:,∴函数f(x)的最小正周期;【点睛】本题主要考查了三角函数的化简以及周期的计算,属于基础题。16、8【解析】
双曲线:的右焦点到渐近线的距离为4,可得的值,由条件以为圆心,2为半径的圆与双曲线仅有1个交点.由双曲线和该圆都是关于轴对称的,所以这个点只能是双曲线的右顶点.即,根据可求得答案.【详解】由题意可得双曲线的一条渐近线方程为,由焦点到渐近线的距离为4,即,即.双曲线上到的距离为2的点有且仅有1个,即以为圆心,2为半径的圆与双曲线仅有1个交点.由双曲线和该圆都是关于轴对称的,所以这个点只能是双曲线的右顶点.所以,又即,即,所以.所以双曲线的右顶点到左焦点的距离为.所以这个点到双曲线的左焦点的距离为8.故答案为:8【点睛】本题考查双曲线的性质,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
⑴因为,所以,即,其中是的外接圆半径,所以,所以为等腰三角形.⑵因为,所以.由余弦定理可知,,即解方程得:(舍去)所以.18、(1);(2)的分布列为
1
2
3
4
【解析】
(I)(II);;;;X的分布列为X
1
2
3
4
P
点评:对于古典概型的问题,主要是理解试验的基本事件空间,以及事件发生的基本事件空间利用比值来求解概率,结合排列组合的知识得到.而分布列的求解关键是对于各个概率值的求解,属于中档题.19、(1)或;(2)【解析】
(1)当时表示出,再利用分类讨论和不等式解法求得的解集;(2)由题意,时,恒成立,由的范围去绝对值,即可求出的取值范围.【详解】(1)当时,,,即,①当时,有,解得;②当时,有,不等式无解;③当时,有,解得;综上,的解集为或;(2)由题意,的解集包含,即时,恒成立,因为,所以,时,的最大值为,即,解得,又,所以.【点睛】本题主要考查绝对值不等式的解法,考查学生分析转化能力和计算能力,属于中档题.20、(1)的增区间为;的减区间为,(2)【解析】
(1)求导,根据导数的正负判断函数的单调区间.(2)对任意的都有恒成立转化为:求得答案.【详解】(1)的定义域为.,当时,,单调递增;当时,或,单调递减;所以的增区间为;的减区间为,.(2)由(1)知在单调递减,单调递增;知的最小值为,又,,,所以在上的值域为.所以实数的取值范围为.【点睛】本题考查了函数的单调性,恒成立问题,将恒成立问题转化为函数的最值问题是解题的关键.21、(1);(2).【解析】
(1)由题意得,解方程即得a,b的值即得解;(2)先求出在上单调递减,在上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版小额贷款抵押合同资产评估及报告协议2篇
- 2025年度个人与公司租赁房屋修缮责任合同4篇
- 2025年度个人旅游规划与导游服务合同2篇
- 2025版室外照明灯具广告宣传与品牌推广合同3篇
- 2025年度煤炭行业绿色运输体系构建合同4篇
- 2025标准新能源材料研发与采购合作协议3篇
- 2025年度生态环保瓷砖批量采购合作协议3篇
- 2025版医疗健康大数据合作开发合同3篇
- 个性化定制小区房产买卖合同(2024版)版B版
- 2025版国际贸易纠纷诉讼担保委托服务协议3篇
- 五年级上册寒假作业答案(人教版)
- 2025年山东浪潮集团限公司招聘25人高频重点提升(共500题)附带答案详解
- 2024年财政部会计法律法规答题活动题目及答案一
- 2025年江西省港口集团招聘笔试参考题库含答案解析
- (2024年)中国传统文化介绍课件
- 液化气安全检查及整改方案
- 《冠心病》课件(完整版)
- 2024年云网安全应知应会考试题库
- 公园保洁服务投标方案
- 光伏电站项目合作开发合同协议书三方版
- 2024年秋季新沪教版九年级上册化学课件 第2章 空气与水资源第1节 空气的组成
评论
0/150
提交评论