![2023年江西省南昌二中、九江一中、新余一中、临川一中八所重点中学高二数学第二学期期末检测模拟试题含解析_第1页](http://file4.renrendoc.com/view/daf9083dec28a5141ff2122f3e060f91/daf9083dec28a5141ff2122f3e060f911.gif)
![2023年江西省南昌二中、九江一中、新余一中、临川一中八所重点中学高二数学第二学期期末检测模拟试题含解析_第2页](http://file4.renrendoc.com/view/daf9083dec28a5141ff2122f3e060f91/daf9083dec28a5141ff2122f3e060f912.gif)
![2023年江西省南昌二中、九江一中、新余一中、临川一中八所重点中学高二数学第二学期期末检测模拟试题含解析_第3页](http://file4.renrendoc.com/view/daf9083dec28a5141ff2122f3e060f91/daf9083dec28a5141ff2122f3e060f913.gif)
![2023年江西省南昌二中、九江一中、新余一中、临川一中八所重点中学高二数学第二学期期末检测模拟试题含解析_第4页](http://file4.renrendoc.com/view/daf9083dec28a5141ff2122f3e060f91/daf9083dec28a5141ff2122f3e060f914.gif)
![2023年江西省南昌二中、九江一中、新余一中、临川一中八所重点中学高二数学第二学期期末检测模拟试题含解析_第5页](http://file4.renrendoc.com/view/daf9083dec28a5141ff2122f3e060f91/daf9083dec28a5141ff2122f3e060f915.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的焦距为,其渐近线方程为,则焦点到渐近线的距离为()A.1 B. C.2 D.2.若实数满足,则下列关系中不可能成立的是()A. B. C. D.3.已知点,则点轨迹方程是()A. B.C. D.4.已知双曲线,,是双曲线上关于原点对称的两点,是双曲线上的动点,直线,的斜率分别为,若的最小值为2,则双曲线的离心率为()A. B. C. D.5.已知满足,其中,则的最小值为()A. B. C. D.16.下列命题中正确的是()A.若为真命题,则为真命题B.“”是“”的充要条件C.命题“,则或”的逆否命题为“若或,则”D.命题:,使得,则:,使得7.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使得α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,m,使得l//α,l//β,m//α,m//β其中,可以判定α与β平行的条件有()A.1个B.2个C.3个D.4个8.若,满足条件,则的最小值为()A. B. C. D.9.已知a=log34,b=,c=,则a,b,c的大小关系为()A.a>b>c B.b>c>aC.c>a>b D.b>a>c10.随机变量,若,则为()A.0.2 B.0.3 C.0.4 D.0.611.已知双曲线过,两点,点为该双曲线上除点,外的任意一点,直线,斜率之积为,则双曲线的方程是()A. B. C. D.12.设,则的值为()A. B.1 C.0 D.-1二、填空题:本题共4小题,每小题5分,共20分。13.已知函数对任意的满足(其中是函数的导函数),则下列不等式成立的是__________.①②③④14.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,,则______.15.已知,则最小值为________.16.下列命题中①若,则函数在取得极值;②直线与函数的图像不相切;③若(为复数集),且,则的最小值是3;④定积分.正确的有__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=ln(ax)+bx在点(1,f(1))处的切线是y=0;(I)求函数f(x)的极值;(II)当恒成立时,求实数m的取值范围(e为自然对数的底数)18.(12分)2021年,广东省将实施新高考,2018年暑期入学的高一学生是新高考首批考生,新高考不再分文理科,采用模式,其中“3”是指语文、数学、外语;“1”是指在物理和历史中必选一科(且只能选一科);“2”是指在化学,生物,政治,地理四科中任选两科.为积极推进新高考,某中学将选科分为两个环节,第一环节:学生在物理和历史两科中选择一科;第二环节:学生在化学,生物,政治,地理四科中任选两科.若一个学生两个环节的选科都确定,则称该学生的选考方案确定;否则,称该学生选考方案待确定.该学校为了解高一年级1000名学生选考科目的意向,随机选取50名学生进行了一次调查,这50人第一环节的选考科目都确定,有32人选物理,18人选历史;第二环节的选考科目已确定的有30人,待确定的有20人,具体调查结果如下表:选考方案确定情况化学生物政治地理物理选考方案确定的有18人161154选考方案待确定的有14人5500历史选考方案确定的有12人35412选考方案待确定的有6人0032(1)估计该学校高一年级选考方案确定的学生中选考政治的学生有多少人?(2)从选考方案确定的12名历史选考生中随机选出2名学生,设随机变量,求的分布列及数学期望.(3)在选考方案确定的18名物理选考生中,有11名学生选考方案为物理、化学、生物,试问剩余7人中选考方案为物理、政治、地理的人数.(只需写出结果)19.(12分)设函数.(1)当时,求关于的不等式的解集;(2)若在上恒成立,求的取值范围.20.(12分)2016年10月16日,在印度果阿出席金砖国家领导人第八次会议时,发表了题为《坚定信心,共谋发展》的重要讲话,引起世界各国的关注,为了了解关注程度,某机构选取“70后”和“80后”两个年龄段作为调查对象,进行了问卷调查,共调查了120名“80后”,80名“70后”,其中调查的“80后”有40名不关注,其余的全部关注;调查的“70”后有10人不关注,其余的全部关注.(1)根据以上数据完成下列2×2列联表:关注不关注合计“80后”“70后”合计(2)根据2×2列联表,能否在犯错误的概率不超过0.001的前提下,认为“关注与年龄段有关”?请说明理由。参考公式:K2=(n=a+b+c+d)附表:P(K2≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.82821.(12分)已知曲线在平面直角坐标系中的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,有曲线.(1)将的方程化为普通方程,并求出的平面直角坐标方程;(2)求曲线和两交点之间的距离.22.(10分)直三棱柱中,,,,F为棱的中点.(1)求证:;(2)点M在线段上运动,当三棱锥的体积最大时,求二面角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
首先根据双曲线的焦距得到,再求焦点到渐近线的距离即可.【详解】由题知:,,.到直线的距离.故选:A【点睛】本题主要考查双曲线的几何性质,同时考查了点到直线的距离公式,属于简单题.2、D【解析】
根据题意,结合对数函数的性质,依次分析选项,综合即可得答案.【详解】根据题意,实数,满足,对于,若,均大于0小于1,依题意,必有,故有可能成立;对于,若,则有,故有可能成立;对于,若,均大于1,由,知必有,故有可能成立;对于,当时,,,不能成立,故选.【点睛】本题考查对数函数的单调性,注意分类讨论、的值,属于中档题.3、A【解析】由双曲线的定义可知:点位于以为焦点的双曲线的左支上,且,故其轨迹方程为,应选答案A。4、A【解析】
先假设点的坐标,代入双曲线方程,利用点差法,可得斜率之间为定值,再利用的最小值为2,即可求得双曲线的离心率.【详解】由题意,可设点,,.,且.两式相减得.再由斜率公式得:.根据的最小值为2,可知,所以a=b.所以,故选:A【点睛】本题主要考查双曲线离心率的计算,根据点的对称性,利用点差法进行化简是解决本题的关键.5、C【解析】
令,利用导数可求得单调性,确定,进而得到结果.【详解】令,则.,由得:;由得:,在上单调递减,在上单调递增,,即的最小值为.故选:.【点睛】本题考查函数最值的求解问题,关键是能够利用导数确定函数的单调性,进而确定最值点.6、B【解析】
根据且、或命题真假性判断A选项真假,根据充要条件知识判断B选项真假,根据逆否命题的概念判断C选项真假,根据特称命题的否定是全称命题判断D选项真假.【详解】对于A选项,当真时,可能一真一假,故可能是假命题,故A选项为假命题.对于B选项,根据基本不等式和充要条件的知识可知,B选项为真命题.对于C选项,原命题的逆否命题为“若且,则”,故C选项为假命题.对于D选项,原命题为特称命题,其否定是全称命题,要注意否定结论,即:,使得.综上所述,本小题选B.【点睛】本小题主要考查还有简单逻辑连接词真假性,考查充要条件,考查逆否命题,考查特称命题的否定是全称命题等知识,属于基础题.7、B【解析】试题分析:直线与平面的位置关系,平面与平面的位置关系,对选项进行逐一判断,确定正确选项即可.:①α与β平行.此时能够判断①存在平面γ,使得α,②存在平面γ,使得α,β都垂直于γ;可以判定α与β平行,如正方体的底面与相对的侧面.也可能α与β不平行.②不正确.③不能判定α与β平行.如α面内不共线的三点不在β面的同一侧时,此时α与β相交;④可以判定α与β平行.∵可在α面内作l'∥l,m'∥m,则l'与考点:平面与平面平行的性质;平面与平面平行的判定;平面与平面垂直的判定.8、A【解析】作出约束条件对应的平面区域(阴影部分),由z=2x﹣y,得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z,经过点A时,直线y=2x﹣z的截距最大,此时z最小.由解得A(0,2).此时z的最大值为z=2×0﹣2=﹣2,故选A.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.9、B【解析】
得出,从而得到的大小关系,得到答案.【详解】由题意,根据对数的运算可得,所以,故选B.【点睛】本题主要考查了对数的换底公式,以及对数的单调性、指数的运算的应用,其中解答中熟记对数的运算性质,合理运算时解答的关键,着重考查了推理与运算能力,属于基础题.10、B【解析】分析:根据正态分布的整体对称性计算即可得结果.详解:故选B.点睛:该题考查的是有关正态分布的问题,在解题的过程中,涉及到的知识点有正态分布曲线的对称性,从而求得结果.11、D【解析】分析:根据两条直线斜率之积为定值,设出动点P的坐标,即可确定解析式。详解:因为直线,斜率之积为,即,设P()则,化简得所以选D点睛:本题考查了圆锥曲线的简单应用,根据斜率乘积为定值确定动点的轨迹方程,属于简单题。12、C【解析】
首先采用赋值法,令,代入求值,通分后即得结果.【详解】令,,,.故选:C【点睛】本题考查二项式定理和二项式系数的性质,涉及系数和的时候可以采用赋值法求和,本题意在考查化归转化和计算求解能力,属于中档题型.二、填空题:本题共4小题,每小题5分,共20分。13、①【解析】构造函数,则,即函数是单调递增函数。因,故,即,所以命题①正确;因,故,即,则命题②不正确;又因为,则,即,则命题③不正确;又因为,则,即,则命题④不正确。应填答案①。点睛:解答本题的关键和难点是构造函数,这是解答本题的突破口和瓶颈。只要能构造出函数的解析式为,然后运用导数知识对函数进行求导,借助导数与函数单调性之间的关系就分别验证四个答案即可巧妙获解。14、0.6【解析】
由题意知,,根据二项分布的概率、方差公式计算即可.【详解】由题意知,该群体的10位成员使用移动支付的概率分布符合二项分布,所以,所以或.
由,得,
即,所以,
所以,
故答案为:.【点睛】本题主要考查的是二项分布问题,根据二项分布求概率,再利用方差公式求解即可.15、4【解析】
把所求式子看作两点间距离的平方,再根据直线与曲线位置关系求最值【详解】看作两点之间距离的平方。点A在直线上,点B在曲线上,取所以,即最小值为4.【点睛】本题考查两点间距离公式以及利用导数求最值,考查综合分析求解能力,属中档题.16、②③④【解析】分析:①结合极值点的概念,加以判断即可;②求出导数f′(x),由切线的斜率等于f′(x0),根据三角函数的值域加以判断即可;③|z+2﹣2i|=1表示圆,|z﹣2﹣2i|的几何意义两点的距离,通过连接两定点,由原定特性即可求出最小值;④令y=,则x2+y2=16(y≥0),点(x,y)的轨迹表示半圆,则该积分表示该圆面积的.详解:①若,且是变号零点,则函数在取得极值,故选项不正确;②直线与函数的图像不相切;直线化为函数形式为,,,,两者不能相切,故选项正确;③|z+2﹣2i|=1的几何意义是以A(﹣2,2)为圆心,半径为1的圆,|z﹣2﹣2i|的几何意义是圆上一点到点B(2,2)的距离,连接AB并延长,显然最小值为AB﹣1=4﹣1=3,故③正确;④令y=,则x2+y2=16(y≥0),点(x,y)的轨迹表示半圆,定积分表示以原点为圆心,4为半径的圆面积的,故定积分=,故④正确.故答案为:②③④点睛:本题以命题的真假为载体考查函数的极值概念,导数的应用于求切线方程,以及复数的几何意义,定积分的几何意义及求法,是一道基础题.注意积分并不等于面积,解决积分问题的常见方法有:面积法,当被积函数为正时积分和面积相等,当被积函数为负时积分等于面积的相反数;应用公式直接找原函数的方法;利用被积函数的奇偶性得结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的极大值为,无极小值;(2).【解析】分析:(1)先根据导数几何意义得解得b,再根据得a,根据导函数零点确定单调区间,根据单调区间确定极值,(2)先化简不等式为,再分别求左右两个函数最值得左边最小值与右边最大值同时取到,则不等式转化为,解得实数m的取值范围.详解:(1)因为,所以因为点处的切线是,所以,且所以,即所以,所以在上递增,在上递减,所以的极大值为,无极小值(2)当恒成立时,由(1),即恒成立,设,则,,又因为,所以当时,;当时,.所以在上单调递减,在上单调递增,;在上单调递增,在上单调递减,.所以均在处取得最值,所以要使恒成立,只需,即解得,又,所以实数的取值范围是.点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.18、(1)180;(1);(3)1人.【解析】
(1)利用分层抽样原理求得对应的学生人数;(1)由题意知随机变量的可能取值,计算对应的概率,写出的分布列,计算数学期望值;(3)由化学中去除11人后余5人,结合选政治和地理的人数,可得所求.【详解】(1)由数据可知,选考方案确定的18名物理选考生中确定选考政治的有5人,选考方案确定的11名历史选考生中确定选考政治的有4人所以,估计该学校高一年级选考方案确定的学生中选考政治的学生有人(1)由数据可知,选考方案确定的11名历史考生中有3人选考化学、地理;有5人选考生物、地理;有4人选考政治、地理.由已知得的所有取值为0,1,则所以的分布列为01所以数学期望.(3)剩余7人中选考方案为物理、政治、地理的人数为1.【点睛】本题考查了分层抽样的计算,也考查了离散型随机变量的分布列与数学期望问题,是中档题.19、(1)(2)【解析】
(1)根据绝对值的意义,取到绝对值号,得到分段函数,进而可求解不等式的解集;(2)因为,得,再利用绝对值的定义,去掉绝对值号,即可求解。【详解】(1)因为,所以的解集为.(2)因为,所以,即,则,所以.【点睛】本题主要考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- SOTS-1-technical-grade-生命科学试剂-MCE-9410
- N-Propionitrile-Chlorphine-hydrochloride-生命科学试剂-MCE-1679
- Cy3-PEG-Amine-生命科学试剂-MCE-8875
- AH-8529-生命科学试剂-MCE-1699
- 1-2-3-Tri-10-Z-undecenoyl-glycerol-生命科学试剂-MCE-6075
- 2025年度药品推广与医药行业协会合作推广协议
- 二零二五年度智能制造产业股权转移合同终止书
- 2025年度工业机器人维护保养与故障排除维修合同
- 二零二五年度房地产项目终止及赔偿协议书
- 2025年度股权分配协议书范本:XX创业团队股权分配及退出补偿实施协议
- 四年级上册简便计算专项练习(已排版可直接下载打印)
- 煤场用车辆倒运煤的方案
- 《预防犯罪》课件
- 【企业作业成本在上海汽车集团中的应用研究案例7300字(论文)】
- 《民航服务沟通技巧》教案第6课巧妙化解冲突
- 化学用语专项训练
- 《了凡四训》课件
- 医院住院病人健康教育表
- 风险矩阵法(详细)
- 实验室供应商评价的5个基本步骤
- 电力公司工程勘察设计管理办法
评论
0/150
提交评论