版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,则A. B.C. D.2.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立做了15次和20次试验,并且利用线性回归方法,求得回归直线为l1和l2,已知在两人的试验中发现对变量x的观测数据的平均值恰好相等,都为s,对变量y的观测数据的平均值也恰好相等,都为t,那么下列说法正确的是()A.直线l1和直线l2有交点(s,t) B.直线l1和直线l2相交,但交点未必是点(s,t)C.直线l1和直线l2必定重合 D.直线l1和直线l2由于斜率相等,所以必定平行3.有张卡片分别写有数字,从中任取张,可排出不同的四位数个数为()A. B. C. D.4.某巨型摩天轮.其旋转半径50米,最高点距地面110米,运行一周大约21分钟.某人在最低点的位置坐上摩天轮,则第35分钟时他距地面大约为()米.A.75 B.85 C.100 D.1105.设函数,,给定下列命题:①若方程有两个不同的实数根,则;②若方程恰好只有一个实数根,则;③若,总有恒成立,则;④若函数有两个极值点,则实数.则正确命题的个数为()A. B. C. D.6.从5名女教师和3名男教师中选出一位主考、两位监考参加2019年高考某考场的监考工作.要求主考固定在考场前方监考,一女教师在考场内流动监考,另一位教师固定在考场后方监考,则不同的安排方案种数为()A.105 B.210 C.240 D.6307.设的展开式的各项系数之和为M,二项式系数之和为N,若240,则展开式中x的系数为()A.300 B.150 C.-150 D.-3008.若函数没有极值,则实数a的取值范围是()A. B. C. D.9.下面几种推理过程是演绎推理的是()A.某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人B.两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=180°C.由平面三角形的性质,推测空间四边形的性质D.在数列{an}中,a1=1,an=12(an-1+1an-1)(n≥2),由此归纳出{a10.若集合,,则有()A. B. C. D.11.已知函数,下面结论错误的是()A.函数的最小正周期为 B.函数在区间上是增函数C.函数的图像关于直线对称 D.函数是奇函数12.分形几何学是美籍法国数学家伯努瓦••曼德尔布罗特()在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路.下图按照的分形规律生长成一个树形图,则第13行的实心圆点的个数是()A.55个 B.89个 C.144个 D.233个二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中系数之和为______________.(结果用数值表示)14.设a、b是两个实数,给出下列条件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.其中能推出“a、b中至少有一个数大于1”的条件是:_____15.f(x)=2sinωx(0<ω<1),在区间上的最大值是,则ω=________.16.某次试验中,是离散型随机变量,服从分布,该事件恰好发生次的概率是______(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在的展开式中,求:(1)第3项的二项式系数及系数;(2)奇数项的二项式系数和;(3)求系数绝对值最大的项.18.(12分)设.(1)当时,,求a的取值范围;(2)若对任意,恒成立,求实数a的最小值.19.(12分)已知椭圆:的焦距为,点在椭圆上.(1)求椭圆方程;(2)设直线:与椭圆交于,两点,且直线,,的斜率之和为0.①求证:直线经过定点,并求出定点坐标;②求面积的最大值.20.(12分)在直角坐标系中,曲线的参数方程为,(为参数),为曲线上的动点,动点满足(且),点的轨迹为曲线.(1)求曲线的方程,并说明是什么曲线;(2)在以坐标原点为极点,以轴的正半轴为极轴的极坐标系中,点的极坐标为,射线与的异于极点的交点为,已知面积的最大值为,求的值.21.(12分)函数.当时,求函数的极值;若,设,若存在,使得成立,求实数a的取值范围.22.(10分)已知函数.(1)求函数的最小值;(2)当时,记函数的所有单调递增区间的长度为,所有单调递减区间的长度为,证明:.(注:区间长度指该区间在轴上所占位置的长度,与区间的开闭无关.)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
分析:求出,得到的范围,进而可得结果.详解:.,即又即故选B.点睛:本题主要考查对数的运算和不等式,属于中档题.2、A【解析】
根据回归直线过样本数据中心点,并结合回归直线的斜率来进行判断。【详解】由于回归直线必过样本的数据中心点,则回归直线和回归直线都过点,做了两次试验,两条回归直线的斜率没有必然的联系,若斜率不相等,则两回归直线必交于点,若斜率相等,则两回归直线重合,所以,A选项正确,B、C、D选项错误,故选:A.【点睛】本题考查回归直线的性质,考查“回归直线过样本数据的中心点”这个结论,同时也要抓住回归直线的斜率来理解,考查分析理解能力,属于基础题。3、C【解析】分析:根据题意,分四种情况讨论:①取出四张卡片中没有重复数字,即取出四张卡片中的数字为1,2,3,4;②取出四张卡片中4有2个重复数字,则2个重复的数字为1或2;③若取出的四张卡片为2张1和2张2;④取出四张卡片中有3个重复数字,则重复数字为1,分别求出每种情况下可以排出四位数的个数,由分类计数原理计算可得结论.详解:根据题意,分四种情况讨论:①取出四张卡片中没有重复数字,即取出四张卡片中的数字为1,2,3,4;此时有种顺序,可以排出24个四位数.②取出四张卡片中4有2个重复数字,则2个重复的数字为1或2,若重复的数字为1,在2,3,4中取出2个,有种取法,安排在四个位置中,有种情况,剩余位置安排数字1,可以排出个四位数同理,若重复的数字为2,也可以排出36个重复数字;③若取出的四张卡片为2张1和2张2,在4个位置安排两个1,有种情况,剩余位置安排两个2,则可以排出个四位数;④取出四张卡片中有3个重复数字,则重复数字为1,在2,3,4中取出1个卡片,有种取法,安排在四个位置中,有种情况,剩余位置安排1,可以排出个四位数,则一共有个四位数,故选C.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.4、B【解析】分析:设出P与地面高度与时间t的关系,f(t)=Asin(ωt+φ)+B,由题意求出三角函数中的参数A,B,及周期T,利用三角函数的周期公式求出ω,通过初始位置求出φ,求出f(35)的值即可.详解:设P与地面高度与时间t的关系,f(t)=Asin(ωt+φ)+B(A>0,ω>0,φ∈[0,2π)),由题意可知:A=50,B=110﹣50=60,T==21,∴ω=,即f(t)=50sin(t+φ)+60,又因为f(0)=110﹣100=10,即sinφ=﹣1,故φ=,∴f(t)=50sin(t+)+60,∴f(35)=50sin(×35+)+60=1.故选B.点睛:已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求.5、C【解析】
利用导数研究函数的单调性,零点,极值以及恒成立问题.【详解】对于①,的定义域,,令有即,可知在单调递减,在单调递增,,且当时,又,从而要使得方程有两个不同的实根,即与有两个不同的交点,所以,故①正确对于②,易知不是该方程的根,当时,,方程有且只有一个实数根,等价于和只有一个交点,,又且,令,即,有,知在和单减,在上单增,是一条渐近线,极小值为.由大致图像可知或,故②错对于③当时,恒成立,等价于恒成立,即函数在上为增函数,即恒成立,即在上恒成立,令,则,令得,有,从而在上单调递增,在上单调递减,则,于是,故③正确.对于④有两个不同极值点,等价于有两个不同的正根,即方程有两个不同的正根,由③可知,,即,则④正确.故正确命题个数为3,故选.【点睛】本题考查利用导数研究函数有关性质,属于基础题目.解题时注意利用数形结合,通过函数图象得到结论.6、B【解析】试题分析:由题意得,先选一名女教师作为流动监控员,共有种,再从剩余的人中,选两名监考员,一人在前方监考,一人在考场后监考,共有种,所以不同的安排方案共有种方法,故选B.考点:排列、组合的应用.7、B【解析】
分别求得二项式展开式各项系数之和以及二项式系数之和,代入,解出的值,进而求得展开式中的系数.【详解】令,得,故,解得.二项式为,展开式的通项公式为,令,解得,故的系数为.故选B.【点睛】本小题主要考查二项式展开式系数之和、二项式展开式的二项式系数之和,考查求指定项的系数,属于中档题.8、A【解析】
由已知函数解析式可得导函数解析式,根据导函数不变号,函数不存在极值点,对讨论,可得答案.【详解】∵,∴,①当时,则,在上为增函数,满足条件;②当时,则,即当时,恒成立,在上为增函数,满足条件综上,函数不存在极值点的充要条件是:.故选:A.【点睛】本题考查的知识点是函数在某点取得极值的条件,本题是一道基础题.9、B【解析】演绎推理是由普通性的前提推出特殊性结论的推理.其形式在高中阶段主要学习了三段论:大前提、小前提、结论,由此对四个命题进行判断得出正确选项.
A选项“高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人”是归纳推理;故错;
B选项是演绎推理,大前提是“两条直线平行,同旁内角互补,”,小前提是“∠A与∠B是两条平行直线的同旁内角”,结论是“∠A+∠B=180°”,故正确;
C选项“由平面三角形的性质,推出空间四边形的性质”是类比推理;故错;
D选项“在数列an中,a1=1,an=12(an-1+1an-110、B【解析】分析:先分别求出集合M和N,由此能求出M和N的关系.详解:,,故.故选:B.点睛:本题考查两个集合的包含关系的判断,考查指数函数、一元二次函数等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.11、D【解析】试题分析:,所以函数的最小正周期为,函数在区间上是增函数,函数的图像关于直线对称,函数是偶函数.考点:1.三角函数的周期性;2.三角函数的奇偶性;3.图像得对称轴;4.函数的单调性.12、C【解析】分析:一一的列举出每行的实心圆点的个数,观察其规律,猜想:,得出结论即可,选择题我们可以不需要完整的理论证明.详解:行数12345678910111213球数01123581321345589144,由此猜想:,故选C.点睛:观察规律,把行数看成数列的项数,个数看作数列的项,尽可能的多推导前面有限项看出规律.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
令求解展开式的系数和即可.【详解】令可得展开式的系数和为:.故答案为:1.【点睛】本题主要考查二项式展开式的系数和的计算,属于基础题.14、③【解析】试题分析:若a=,b=,则a+b>1,但a<1,b<1,故①推不出;若a=b=1,则a+b=2,故②推不出;若a=-2,b=-3,则a2+b2>2,故④推不出;若a=-2,b=-3,则ab>1,故⑤推不出;对于③,即a+b>2,则a,b中至少有一个大于1,反证法:假设a≤1且b≤1,则a+b≤2与a+b>2矛盾,因此假设不成立,故a,b中至少有一个大于1.[来源:Z§考点:不等式性质15、【解析】
函数f(x)的周期T=,因此f(x)=2sinωx在上是增函数,∵0<ω<1,∴是的子集,∴f(x)在上是增函数,∴=,即2sin=,∴ω=,∴ω=,故答案为.16、【解析】
根据二项分布的概率计算公式,代值计算即可.【详解】根据二项分布的概率计算公式,可得事件发生2次的概率为故答案为:.【点睛】本题考查二项分布的概率计算公式,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】
写出二项式的通项公式.(1)根据二项式的通项公式可以求出此问;(2)根据奇数项的二项式系数和公式可以直接求出此问题;(3)设出系数绝对值最大的项为第(r+1)项,根据二项式的通项公式,列出不等式组,解这个不等式组即可求出此问题.【详解】二项式的通项公式为:.(1)第3项的二项式系数为,第三项的系数为;(2)奇数项的二项式系数和;(3)设系数绝对值最大的项为第(r+1)项,则,又,所以r=2.∴系数绝对值最大的项为.【点睛】本题考查了二项式通项公式的应用,考查了奇数项的二项式系数和公式,考查了数学运算能力.18、(1),(2)的最小值为【解析】试题分析:(1)的取值范围是;(2),当且仅当时取等号的最小值为.试题解析:(1),即依题意:由此得a的取值范围是(2)当且仅当时取等号解不等式得.故实数a的最小值为.考点:不等式选讲.19、(1);(2)①证明见解析;②1【解析】
(1)由条件有,将点代入椭圆方程结合,可求解椭圆方程.
(2)①设点,,设直线,,的斜率分别为,由条件有,将直线方程与椭圆方程联立,将,代入化简可得,得到直线过定点.
②由①利用弦长公式可求出,再求出原点到直线的距离,则的面积可表示出来,从而可求其最大值.【详解】解:(1)由题意可得,又由点在椭圆上,故得,∵,解得,.∴椭圆的方程为;(2)设点,.联立得,∴,化简得①,②,③设直线,,的斜率分别为直线,,的斜率之和为0,∴,即,∴,又,∴.综上可得,直线经过定点.②由①知.∴,原点到直线的距离.∴,∵,当且仅当,即取“”.∴,即面积的最大值为1.【点睛】本题考查求椭圆方程和证明直线过定点、求三角形的面积的最值,考查方程联立,利用韦达定理的舍而不求的方法的应用,考查计算化简能力,属于难题.20、(1)见解析;(2)2【解析】分析:(1)设,,根据,推出,代入到,消去参数即可求得曲线的方程及其表示的轨迹;(2)法1:先求出点的直角坐标,再求出直线的普通方程,再根据题设条件设点坐标为,然后根据两点之间距离公式及三角函数的图象与性质,结合面积的最大值为,即可求得的值;法2:将,代入,即可求得,再根据三角形面积公式及三角函数的图象与性质,结合面积的最大值为,即可求得的值.详解:(1)设,,由得.∴∵在上∴即(为参数),消去参数得.∴曲线是以为圆心,以为半径的圆.(2)法1:点的直角坐标为.∴直线的普通方程为,即.设点坐标为,则点到直线的距离.∴当时,∴的最大值为∴.法2:将,代入并整理得:,令得.∴∴∴当时,取得最大值,依题意,∴.点睛:本题主要考查把参数方程转化为普通方程,在引进参数和消去参数的过程中,要注意保持范围的一致性;在参数方求最值问题中,将动点的参数坐标,根据题设条件列出三角函数式,借助于三角函数的图象与性质,即可求最值,注意求最值时,取得的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度油气井防砂打井合同样本4篇
- 二零二五年度农业品牌保护与维权服务合同4篇
- 事业单位临时聘用人员2024合同合同
- 2025年度环保科技项目个人合伙合同规范3篇
- 2025年度智能仓储管理系统承租合同规范4篇
- 2025年度农业虫害防治与无人机喷洒服务合同4篇
- 二零二五年度深海油气打井承包合同范本4篇
- 2025年度个人水电工程设计与施工总承包合同4篇
- 2025年度电梯安全性能提升与节能改造合同4篇
- 2025年度民间借贷电子签章与信息安全服务合同4篇
- 五年级上册寒假作业答案(人教版)
- 2025年山东浪潮集团限公司招聘25人高频重点提升(共500题)附带答案详解
- 2024年财政部会计法律法规答题活动题目及答案一
- 2025年江西省港口集团招聘笔试参考题库含答案解析
- (2024年)中国传统文化介绍课件
- 液化气安全检查及整改方案
- 《冠心病》课件(完整版)
- 2024年云网安全应知应会考试题库
- 公园保洁服务投标方案
- 光伏电站项目合作开发合同协议书三方版
- 2024年秋季新沪教版九年级上册化学课件 第2章 空气与水资源第1节 空气的组成
评论
0/150
提交评论