版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知样本数据,,,,,,则下列说法不正确的是()A.平均数是 B.中位数是 C.众数是 D.方差是2.长春市某服装店销售夏季T恤衫,试销期间对4种款式T恤衫的销售量统计如下表:款式ABCD销售量/件1851该店老板如果想要了解哪种款式的销售量最大,那么他应关注的统计量是(
)A.平均数 B.众数 C.中位数 D.方差3.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是()A.7 B.8 C.6 D.54.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲 B.乙 C.丙 D.丁5.如图,在中,于点,,则的度数是()A. B. C. D.6.若一个等腰三角形的腰长为5,底边长为6,则底边上的高为()A.4 B.3 C.5 D.67.为了了解某地八年级男生的身高情况,从当地某学校选取了60名男生统计身高情况,60名男生的身高(单位:cm)分组情况如下表所示,则表中a,b的值分别为()分组147.5~157.5157.5~167.5167.5~177.5177.5~187.5频数1026a频率0.3bA.18,6 B.0.3,6C.18,0.1 D.0.3,0.18.如图,已知矩形ABCD的对角线AC的长为10cm,连接各边中点E,F,G,H得四边形EFGH,则四边形EFGH的周长为()A.25cm B.20cmC.20cm D.20cm9.如图,下列判断中正确的是()A.如果∠3+∠2=180°,那么AB∥CD B.如果∠1+∠3=180°,那么AB∥CDC.如果∠2=∠4,那么AB∥CD D.如果∠1=∠5,那么AB∥CD10.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A. B. C. D.11.如图:菱形ABCD的对角线AC,BD相交于点O,AC=,BD=,动点P在线段BD上从点B向点D运动,PF⊥AB于点F,PG⊥BC于点G,四边形QEDH与四边形PFBG关于点O中心对称,设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,,若S1=S2,则的值是()A. B.或 C. D.不存在12.如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为().A. B. C. D.二、填空题(每题4分,共24分)13.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为________________.14.若是二次函数,则m=________
.15.如图,在正方向中,是对角线上一点,的延长线与交于点,若,则______;16.如图,直线y=mx与双曲线y=交于A、B两点,D为x轴上一点,连接BD交y轴与点C,若C(0,-2)恰好为BD中点,且△ABD的面积为6,则B点坐标为__________.17.如果关于x的方程没有实数根,则k的取值范围为______.18.使分式有意义的x的范围是________
。三、解答题(共78分)19.(8分)阅读材料:在实数范围内,当且时,我们由非负数的性质知道,所以,即:,当且仅当=时,等号成立,这就是数学上有名的“均值不等式”,若与的积为定值.则有最小值:请问:若,则当取何值时,代数式取最小值?最小值是多少?20.(8分)已知,矩形ABCD中,AB=6cm,BC=18cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中.①已知点P的速度为每秒10cm,点Q的速度为每秒6cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为x、y(单位:cm,xy≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求x与y满足的函数关系式.21.(8分)如图,在菱形中,.请根据下列条件,仅用无刻度的直尺过顶点作菱形的边上的高。(1)在图1中,点为中点;(2)在图2中,点为中点.22.(10分)已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD交于F.求证:四边形AECF是平行四边形.23.(10分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点O成中心对称的△A1B1C1;(2)作出将△A1B1C1向右平移3个单位,再向上平移4个单位后的△A2B2C2;(3)请直接写出点B2关于x轴对称的点的坐标.24.(10分)先化简,然后从,,,中选择一个合适的数作为的值代入求值25.(12分)(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:①∠BEA=∠G,②EF=FG.(2)如图2,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.26.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G.F为AB边上一点,连接CF,且∠ACF=∠CBG.(1)求证:BG=CF;(2)求证:CF=2DE;(3)若DE=1,求AD的长
参考答案一、选择题(每题4分,共48分)1、D【解析】
要求平均数只要求出数据之和再除以总个数即可;根据中位数的定义可求出;对于极差是最大值与最小值的差;方差是样本中各数据与样本平均数的差的平方和的平均数.【详解】在已知样本数据1,1,4,3,5中,平均数是3;
根据中位数的定义,中位数是3,众数是3方差=1.所以D不正确.
故选:D.【点睛】本题考查平均数和中位数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.2、B【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是对4种款式T恤衫的销售量情况作调查,所以应该关注销量的最多,故值得关注的是众数.【详解】由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选B.【点睛】本题考查了统计的有关知识,熟知平均数、中位数、众数、方差的意义是解决问题的关键.3、B【解析】
根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:110°•(n-2)=3×360°解得n=1.故选:B.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.4、D【解析】
∵射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S2甲>S2乙>S2丙>S2丁,∴射箭成绩最稳定的是丁;故选D.5、B【解析】
由四边形ABCD是平行四边形,根据平行四边形的对角相等,可得∠D=∠B=55°,又因为AE⊥CD,可得∠DAE=180°-∠D-∠AED=35°.【详解】解:∵四边形ABCD是平行四边形,
∴∠D=∠B=55°,
∵AE⊥CD,
∴∠AED=90°,
∴∠DAE=180°-∠D-∠AED=35°.
故选:B.【点睛】本题考查了平行四边形的性质:平行四边形的对角相等,还考查了垂直的定义与三角形内角和定理.题目比较简单,解题时要细心.6、A【解析】
根据等腰三角形底边高线和中线重合的性质,则BD=DC=3,可以根据勾股定理计算底边的高AD=.【详解】解:如图,在△ABC中,AB=AC=5,AD⊥BC,则AD为BC边上的中线,即D为BC中点,∴BD=DC=3,在直角△ABD中AD==1.故选:A.【点睛】本题考查了勾股定理在直角三角形中的正确运用,考查了等腰三角形底边高线、中线重合的性质,本题中根据勾股定理正确计算AD是解题的关键.7、C【解析】
解:因为a=61×1.3=18,所以第四组的人数是:61﹣11﹣26﹣18=6,所以b==1.1,故选C.【点睛】本题考查频数(率)分布表.8、D【解析】
根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线是相等的,都为10,那么就求得了各边长,让各边长相加即可.【详解】∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=AC=5cm,同理EF=5cm,根据矩形的对角线相等,连接BD,得到:EH=FG=5cm,∴四边形EFGH的周长为20cm.故选D.【点睛】本题考查三角形中位线等于第三边的一半的性质.9、D【解析】分析:直接利用平行线的判定方法分别判断得出答案.详解:A、如果∠3+∠2=180°,无法得出AB∥CD,故此选项错误;B、如果∠1+∠3=180°,无法得出AB∥CD,故此选项错误;C、如果∠2=∠4,无法得出AB∥CD,故此选项错误;D、如果∠1=∠5,那么AB∥CD,正确.故选D.点睛:此题主要考查了平行线的判定,正确掌握相关判定方法是解题关键.10、A【解析】
∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!11、A【解析】
根据对称性确定E、F、G、H都在菱形的边上,由于点P在BO上与点P在OD上求S1和S1的方法不同,因此需分情况讨论,由S1=S1和S1+S1=8可以求出S1=S1=2.然后在两种情况下分别建立关于x的方程,解方程,结合不同情况下x的范围确定x的值.【详解】①当点P在BO上,0<x≤1时,如图1所示.∵四边形ABCD是菱形,AC=2,BD=2,∴AC⊥BD,BO=BD=1,AO=AC=1,且S菱形ABCD=BD•AC=8.∴tan∠ABO==.∴∠ABO=60°.在Rt△BFP中,∵∠BFP=90°,∠FBP=60°,BP=x,∴sin∠FBP=.∴FP=x.∴BF=.∵四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,∴S△BFP=S△BGP=S△DEQ=S△DHQ.∴S1=2S△BFP=2××x•=x1.∴S1=8-x1.②当点P在OD上,1<x≤2时,如图1所示.∵AB=2,BF=,∴AF=AB-BF=2.在Rt△AFM中,∵∠AFM=90°,∠FAM=30°,AF=2-.∴tan∠FAM=.∴FM=(2-).∴S△AFM=AF•FM=(2-)•(2-)=(2-)1.∵四边形PFBG关于BD对称,四边形QEDH与四边形FPBG关于AC对称,∴S△AFM=S△AEM=S△CHN=S△CGN.∴S1=2S△AFM=2×(2-)1=(x-8)1.∴S1=8-S1=8-(x-8)1.综上所述:当0<x≤1时,S1=x1,S1=8-x1;当1<x≤2时,S1=8-(x-8)1,S1=(x-8)1.当点P在BO上时,0<x≤1.∵S1=S1,S1+S1=8,∴S1=2.∴S1=x1=2.解得:x1=1,x1=-1.∵1>1,-1<0,∴当点P在BO上时,S1=S1的情况不存在.当点P在OD上时,1<x≤2.∵S1=S1,S1+S1=8,∴S1=2.∴S1=(x-8)1=2.解得:x1=8+1,x1=8-1.∵8+1>2,1<8-1<2,∴x=8-1.综上所述:若S1=S1,则x的值为8-1.故选A.【点睛】本题考查了以菱形为背景的轴对称及轴对称图形的相关知识,考查了菱形的性质、特殊角的三角函数值等知识,还考查了分类讨论的思想.12、A【解析】
根据题意可得菱形的两对角线长分别为4cm,5cm,根据面积公式求出菱形的面积.【详解】由题意知,AC的一半为2cm,BD的一半为2.5cm,则AC=4cm,BD=5cm,∴菱形的面积为4×5÷2=10cm².故选A.【点睛】本题考查了菱形的性质,解题的关键是掌握对角线平分且垂直的菱形的面积等于对角线积的一半.二、填空题(每题4分,共24分)13、1.【解析】
∵△ABC沿射线BC方向平移2个单位后得到△DEF,∴DE=AB=1,CE=BC−BE=6−2=1,∵∠B=∠DEC=60°,∴△DEC是等边三角形,∴DC=1,故答案为1.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.14、-1.【解析】试题分析:根据二次函数的定义可知:,解得:,则m=-1.15、4【解析】
由正方形的对称性和矩形的性质可得结果.【详解】连接DE交FG于点O,由正方形的对称性及矩形的性质可得:∠ABE=∠ADF=∠OEF=∠OFE=15°,∴∠EOH=30°,∴BE=DE=2OE=4EH,∴=4.故答案为4.【点睛】本题考查了正方形的性质与矩形的性质,解答本题的关键是利用正方形的对称性求得∠ABE=∠ADF=∠OEF=∠OFE=15,进而利用RT△中30°所对的直角边等于斜边的一半解决问题.16、(,-4)【解析】
设点B坐标为(a,b),由点C(0,-2)是BD中点可得b=-4,D(-a,0),根据反比例函数的对称性质可得A(-a,4),根据A、D两点坐标可得AD⊥x轴,根据△ABD的面积公式列方程可求出a值,即可得点B坐标.【详解】设点B坐标为(a,b),∵点C(0,-2)是BD中点,点D在x轴上,∴b=-4,D(-a,0),∵直线y=mx与双曲线y=交于A、B两点,∴A(-a,4),∴AD⊥x轴,AD=4,∵△ABD的面积为6,∴S△ABD=AD×2a=6∴a=,∴点B坐标为(,-4)【点睛】本题考查反比例函数的性质,反比例函数图象是以原点为对称中心的双曲线,根据反比例函数的对称性表示出A点坐标是解题关键.17、【解析】
根据判别式的意义得到△=(-3)2-4×(-2k)<0,然后解不等式即可.【详解】根据题意得△=(-3)2-4×(-2k)<0,解得.故答案为.【点睛】本题考查根的判别式和解不等式,解题的关键是掌握根的判别式和解不等式.18、x≠1【解析】
根据分式有意义的条件可求解.【详解】分母不为零,即x-1≠0,x≠1.故答案是:x≠1.【点睛】考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.三、解答题(共78分)19、x=2时,最小值是1.【解析】
先提公因式,再根据“均值不等式”的性质计算.【详解】根据题意得:x=,
解得,x1=2,x2=-2(舍去),
则当x=2时,代数式2x+取最小值,最小值是1.【点睛】本题考查的是配方法的应用,掌握完全平方公式、“均值不等式”的概念是解题的关键.20、(1)证明见解析,;(2)①,②.【解析】
(1)首先证明,由此得出,从而证明四边形为菱形,然后在Rt△ABF中利用勾股定理进一步求解即可;(2)①根据题意依次发现当点在上时,点在上以及点在上时,点在或上,也不能构成平行四边形,当点在上、点在上时,才能构成平行四边形,据此进一步求解即可;②以、、、四点为顶点的四边形是平行四边形时,根据题意分当点在上、点在上时或当点在上、点在上时以及当点在上、点在上时三种情况进一步分析求解即可.【详解】(1)证明:∵四边形是矩形,∴,∴,.∵垂直平分,垂足为,∴,在和△COF中,∵∴,∴,∴四边形为平行四边形,又∵,∴四边形为菱形,设菱形的边长,则在Rt△ABF中,,解得:,∴;(2)①显然当点在上时,点在上,此时、、、四点不可能构成平行四边形;同理点在上时,点在或上,也不能构成平行四边形.因此只有当点在上、点在上时,才能构成平行四边形.∴以、、、四点为顶点的四边形是平行四边形时,,∵点的速度为每秒,点的速度为每秒,运动时间为秒,∴,,∴,解得:,∴以、、、四点为顶点的四边形是平行四边形时,;②由题意得,以、、、四点为顶点的四边形是平行四边形时,点、在互相平行的对应边上.分三种情况:其一:如图1,当点在上、点在上时,,,即;其二:如图2,当点在上、点在上时,,,即;其三:如图3,当点在上、点在上时,,,即,综上所述,与满足的函数关系式是.【点睛】本题主要考查了菱形的判定、全等三角形性质及判定、平行四边形的动点问题与一次函数的综合运用,熟练掌握相关方法是解题关键.21、(1)见解析;(2)见解析.【解析】
(1)在菱形中,,可知△ACD是等边三角形,过顶点作菱形的边上的高,即找到AD的边中点即可.根据菱形是中心对称图形,连接AC、BD得到对称中心O,再作直线交于,连接,即可.(2)在菱形中,,可知△ACD是等边三角形,过顶点作菱形的边上的高,即找到AD的边中点即可.根据菱形是轴对称图形,连接,交于点,作直线交于,线段即为所求.【详解】解:(1)如图1中,连接,交于点,作直线交于,连接,线段即为所求.(2)如图2中,连接,交于点,作直线交于,线段即为所求.【点睛】本题考查菱形的性质,三角形的高的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、证明见解析.【解析】
求证四边形AECF是平行四边形,只要求证OE=OF,根据对角线互相平分的四边形是平行四边形即可求证,依据△AOE≌△COF即可证明OE=OF.【详解】证明:∵平行四边形ABCD中AB∥CD,∴∠OAE=∠OCF,又∵OA=OC,∠COF=∠AOE,∴△AOE≌△COF(ASA),∴OE=OF,又∵OA=OC∴四边形AECF是平行四边形.【点睛】本题考查平行四边形的判定与性质,熟练掌握性质是解题的关键.23、作图见解析.【解析】分析:(1)分别作出点A、B、C关于原点的对称点,顺次连接,即可得出图象;(2)根据△A1B1C1将向右平移3个单位,再向上平移4个单位后,得出△A2B2C2;(3)直接写出答案即可.详解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)点B2关于x轴对称的点的坐标为(4,﹣3).点睛:本题考查的是作图-旋转变换和平移变换,熟知图形旋转的性质和平移的性质是解答此题的关键.24、【解析】
根据分式的运算进行化简,再根据分母不为零代入一个数求解.【详解】解:原式当,原式;或当时,原式【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式运算法则.25、(1)①见解析②见解析(1)【解析】
(1)在△ABE和△ADG中,根据SAS得出△ABE≌△ADG则∠BEA=∠G.然后在△FAE和△GAF中通过SAS证明得出△FAE≌△GAF,则EF=FG.(1)过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.在△ABM和△ACE中,通过SAS证明得出△ABM≌△ACE,AM=AE,∠BAM+∠CAN=45°.在△MAN和△EAN中,通过SAS证明得出△MAN≌△EAN,MN=EN.Rt△ENC中,由勾股定理,得EN1=EC1+NC1得出最终结果.【详解】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∠BEA=∠G∴∠BAE=∠DAG,AE=AG,又∠BAD=90°,∴∠EAG=90°,∠FAG=45°在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG(1)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 胎记的临床护理
- 儿童学习能力障碍的健康宣教
- 《机械制造基础》课件-05篇 第八单元 超精密加工
- 《机械设计基础》课件-第5章
- 《计算机表格处理》课件
- 【培训课件】青果园 万名大学生创意创业园区项目介绍
- 《认识HS商品分类》课件
- 社区户外旅游组织计划
- 生物学课程的扩展与拓展计划
- 提升师生互动频率的计划
- 碳酸丙烯脂吸收二氧化碳
- 关于区人民法院立案工作情况的调研报告
- 高放废物深地质处置
- 关于《公交都市考核评价指标体系》的说明
- 食堂防火、防毒、防盗“三防”措施方案
- 机械零件测绘
- 护理质量持续改进记录.doc
- 中国诗词大会第一季全部诗词
- 第七章金融远期、期货和互换案例
- 最新安全日志范本
- 工程量计算表.doc
评论
0/150
提交评论