2023届玉树市重点中学数学高二下期末质量跟踪监视模拟试题含解析_第1页
2023届玉树市重点中学数学高二下期末质量跟踪监视模拟试题含解析_第2页
2023届玉树市重点中学数学高二下期末质量跟踪监视模拟试题含解析_第3页
2023届玉树市重点中学数学高二下期末质量跟踪监视模拟试题含解析_第4页
2023届玉树市重点中学数学高二下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.集合,则等于()A. B. C. D.2.已知复数z满足,则复数等于()A. B. C. D.i3.函数f(x)的定义域为R,导函数f′(x)的图象如图所示,则函数f(x)().A.无极大值点,有四个极小值点B.有三个极大值点,两个极小值点C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点4.平面上有个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成块区域,有,,,则().A. B.C. D.5.随机变量的分布列为12340.20.30.4则()A.4.8 B.5 C.6 D.8.46.对于实数,下列结论中正确的是()A.若,则B.若,则C.若,则D.若,,则7.已知.则()A. B. C. D.8.已知,,则A. B. C. D.9.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是()A.5,10,15,20,25B.2,4,8,16,32C.1,2,3,4,5D.7,17,27,37,4710.△ABC的两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是()A. B.(y≠0)C. D.(y≠0)11.的展开式中,的系数为()A.2 B.4 C.6 D.812.设非零向量满足,,则向量间的夹角为()A.150° B.60°C.120° D.30°二、填空题:本题共4小题,每小题5分,共20分。13.科目二,又称小路考,是机动车驾驶证考核的一部分,是场地驾驶技能考试科目的简称.假设甲每次通过科目二的概率均为,且每次考试相互独立,则甲第3次考试才通过科目二的概率为__________.14.已知点均在表面积为的球面上,其中平面,,则三棱锥的体积的最大值为__________.15.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.16.在展开式中,常数项为_____________.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)若函数在处取得极值,求的值;(Ⅱ)设,若函数在定义域上为单调增函数,求的最大整数值.18.(12分)如图,在四棱锥S-ABCD中,平面,底面ABCD为直角梯形,,,且(Ⅰ)求与平面所成角的正弦值.(Ⅱ)若E为SB的中点,在平面内存在点N,使得平面,求N到直线AD,SA的距离.19.(12分)已知.(1)求函数的单调递增区间与对称轴方程;(2)当时,求的最大值与最小值.20.(12分)已知复数,其中i为虚数单位.(1)若复数z是实数,求实数m的值;(2)若复数z是纯虚数,求实数m的值.21.(12分)为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验.为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.分数甲班频数56441乙班频数13655(1)由以上统计数据填写下面列联表,并判断能否在犯错概率不超过0.025的前提下认为“成绩优良与教学方式有关”?甲班乙班总计成绩优良成绩不优良总计附:,其中.临界值表0.100.050.0252.7063.8415.024(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为,求的分布列及数学期望.22.(10分)已知椭圆(a>b>0)经过点,且离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)已知A(0,b),B(a,0),点P是椭圆C上位于第三象限的动点,直线AP、BP分别将x轴、y轴于点M、N,求证:|AN|•|BM|为定值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】试题分析:集合,,,,故选B.考点:指数函数、对数函数的性质及集合的运算.2、D【解析】

把给出的等式通过复数的乘除运算化简后,直接利用共轭复数的定义即可得解.【详解】,,.故选:D.【点睛】本题考查了复数的代数形式的乘除运算,考查共扼复数,是基础题.3、C【解析】试题分析:所给图象是导函数图象,只需要找出与轴交点,才能找出原函数的单调区间,从而找出极值点;由本题图中可见与有四个交点,其中两个极大值,两极小值.考点:函数的极值.4、B【解析】

分析可得平面内有个圆时,它们将平面分成块,再添加第个圆时,因为每两个都相交于两点,每三个都无公共点,故会增加个圆.再求和即可.【详解】由题,添加第个圆时,因为每两个都相交于两点,每三个都无公共点,故会增加个圆.又,故.即.累加可得.故选:B【点睛】本题主要考查了根据数列的递推关系求解通项公式的方法,需要画图分析进行理解.或直接计算等利用排除法判断.属于中档题.5、B【解析】分析:先求出a,再求,再利用公式求.详解:由题得a=1-0.2-0.3-0.4=0.1.由题得.所以所以.故答案为:B.点睛:(1)本题主要考查概率的计算和随机变量的期望的计算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)若(a、b是常数),是随机变量,则也是随机变量,.6、D【解析】试题分析:对于A.若,若则故A错;对于B.若,取则是假命题;C.若,取,则是错误的,D.若,则取,又,所以,又因为同号,则考点:不等式的性质的应用7、C【解析】

由二项式定理及利用赋值法即令和,两式相加可得,结合最高次系数的值即可得结果.【详解】中,取,得,取,得,所以,即,又,则,故选C.【点睛】本题主要考查了二项式定理及利用赋值法求二项式展开式的系数,属于中档题.8、A【解析】,故选A.9、D【解析】此题考查系统抽样系统抽样的间隔为:k=50答案D点评:掌握系统抽样的过程10、D【解析】所以定点的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,选D.11、D【解析】

由题意得到二项展开式的通项,进而可得出结果.【详解】因为的展开式的第项为,令,则,所以的系数为8.故选D【点睛】本题主要考查求指定项的系数问题,熟记二项式定理即可,属于常考题型.12、C【解析】

利用平方运算得到夹角和模长的关系,从而求得夹角的余弦值,进而得到夹角.【详解】即本题正确选项:【点睛】本题考查向量夹角的求解,关键是利用平方运算和数量积运算将问题变为模长之间的关系,求得夹角的余弦值,从而得到所求角.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】甲第3次考试才通过科目二,则前两次都未通过,第3次通过,故所求概率为.填14、【解析】分析:先求出球的半径,再求出三棱锥的体积的表达式,最后求函数的最大值.详解:设球的半径为R,所以设AB=x,则,由余弦定理得设底面△ABC的外接圆的半径为r,则所以PA=.所以三棱锥的体积=.当且仅当x=时取等.故答案为点睛:(1)本题主要考查球的体积和几何体的外接球问题,考查基本不等式,意在考查学生对这些基础知识的掌握能力和空间想象能力.(2)三元基本不等式:,当且仅当a=b=c>0时取等.(3)函数的思想是高中数学的重要思想,一般是先求出函数的表达式,再求函数的定义域,再求函数的最值.15、【解析】

利用定积分求得阴影部分的面积,然后利用几何概型的概率计算公式,即可求解.【详解】由题意,结合定积分可得阴影部分的面积为,由几何概型的计算公式可得,黄豆在阴影部分的概率为.【点睛】本题主要考查了定积分的几何意义求解阴影部分的面积,以及几何概型及其概率的计算问题,其中解答中利用定积分的几何意义求得阴影部分的面积是解答的关键,着重考查了推理与计算能力,属于基础题.16、【解析】

求出展开式的通项,利用的指数为零求出参数的值,再将参数代入通项即可得出展开式中常数项的值.【详解】展开式的通项为.令,解得.因此,展开式中的常数项为.故答案为:.【点睛】本题考查二项展开式中常数项的计算,一般利用展开式通项来求解,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)的最大整数值为2.【解析】分析:(1)先求导数,再根据根据极值定义得0,解得的值,最后列表验证.(2)先转化为恒成立,再利用结论(需证明),得,可得当时,恒成立;最后举反例说明当时,,即不恒成立.详解:(Ⅰ),若函数在处取得极值,则,解得.经检验,当时,函数在处取得极值.综上,.(Ⅱ)由题意知,,.若函数在定义域上为单调增函数,则恒成立.先证明.设,则.则函数在上单调递减,在上单调递增.所以,即.同理,可证,所以,所以.当时,恒成立;当时,,即不恒成立.综上所述,的最大整数值为2.点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,即转化为方程或不等式解的问题(有解,恒成立,无解等),而不等式有解或恒成立问题,又可通过适当的变量分离转化为对应函数最值问题.18、(Ⅰ);(Ⅱ)N到直线AD,SA的距离分别为1,1.【解析】

(Ⅰ)以点A为原点,以AD所在方向为x轴,以AS所在方向为z轴,以AB所在方向为y轴,建立空间直角坐标系,利用向量方法求与平面所成角的正弦值;(Ⅱ))设,再根据已知求出x,z,再求出N到直线AD,SA的距离.【详解】解:(I)以点A为原点,以AD所在方向为x轴,以AS所在方向为z轴,以AB所在方向为y轴,建立空间直角坐标系,D(1,0,0),S(0,0,2),,,,设平面的一个法向量为则由设与平面所成角为,则.(II)设,S(0,0,2),B(0,2,0),E(0,1,1),由故N到直线AD,SA的距离分别为1,1.【点睛】本题主要考查线面角的求法,考查点到直线距离的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1)单调递增区间为,k∈Z.对称轴方程为,其中k∈Z.(2)f(x)的最大值为2,最小值为–1.【解析】(1)因为,由,求得,k∈Z,可得函数f(x)的单调递增区间为,k∈Z.由,求得,k∈Z.故f(x)的对称轴方程为,其中k∈Z.(2)因为,所以,故有,故当即x=0时,f(x)的最小值为–1,当即时,f(x)的最大值为2.20、(1)或;(2).【解析】

(1)由实数定义可知虚部为零,由此构造方程求得结果;(2)由纯虚数定义可知实部为零且虚部不为零,由此构造方程求得结果.【详解】(1)令,解得:或当或时,复数是实数(2)令,解得:或又,即:且当时,复数是纯虚数【点睛】本题考查根据复数的类型求解参数值的问题,关键是熟练掌握实数和纯虚数的定义;易错点是在复数为纯虚数时,忽略的要求,造成求解错误.21、(1)填表见解析;能在犯错概率不超过0.025的前提下认为“成绩优良与教学方式有关”(2)详见解析【解析】

(1)先由统计数据可得列联表,再由列联表求出的观测值,然后结合临界值表即可得解;(2)先确定的可能取值,再求对应的概率,列出分布列,然后求出其期望即可得解.【详解】解:(1)由统计数据可得列联表为:甲班乙班总计成绩优良91625成绩不优良11415总计202040根据列联表中的数据,得的观测值为,∴在犯错概率不超过0.025的前提下认为“成绩优良与教学方式有关”.(2)由表可知在8人中成绩不优良的人数为,则的可能取值为0,1,2,3.;;;.∴的分布列为0123所以.【点睛】本题考查了独立性检验及列联表,重点考查了离散型随机变量的分布列及期望,属中档题.22、(1)+y2=1.(2)见解析.【解析】

(1)由题意可得:,,a2=b2+c2,联立解得:a,b.即可得出椭圆C的方程.(2)设P(x0,y0),(x0<0,y0<0)A(2,0),B(0,1)..可得直线BP,AP的方程分别为:y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论