2023届太原师院附中师苑中学数学高二下期末统考试题含解析_第1页
2023届太原师院附中师苑中学数学高二下期末统考试题含解析_第2页
2023届太原师院附中师苑中学数学高二下期末统考试题含解析_第3页
2023届太原师院附中师苑中学数学高二下期末统考试题含解析_第4页
2023届太原师院附中师苑中学数学高二下期末统考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1个人完成这项工作,则不同的选法共有()A.5种 B.4种 C.9种 D.20种2.已知全集,,则()A. B. C. D.3.已知函数,与的图象上存在关于轴对称的点,则实数的取值范围是()A. B. C. D.4.已知直线(t为参数)上两点对应的参数值分别是,则()A. B.C. D.5.若某空间几何体的三视图如图所示,则该几何体的体积为()A.2π+2 B.4π+2C.2π+ D.4π+6.下列命题正确的是()A.进制转换:B.已知一组样本数据为1,6,3,8,4,则中位数为3C.“若,则方程”的逆命题为真命题D.若命题:,,则:,7.下列说法中正确的个数是()①命题:“、,若,则”,用反证法证明时应假设或;②若,则、中至少有一个大于;③若、、、、成等比数列,则;④命题:“,使得”的否定形式是:“,总有”.A. B. C. D.8.若,则下列结论正确的是()A. B. C. D.9.二项式(ax-36)3(a>0)的展开式的第二项的系数为A.3B.73C.3或73D.310.要得到函数的图象,只需将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度11.已知,则等于()A.-4 B.-2 C.1 D.212.若向量,,则向量与()A.相交 B.垂直 C.平行 D.以上都不对二、填空题:本题共4小题,每小题5分,共20分。13.在的二项展开式中,常数项为________(结果用数值表示)14.已数列,令为,,,中的最大值2,,,则称数列为“控制数列”,数列中不同数的个数称为“控制数列”的“阶数”例如:为1,3,5,4,2,则“控制数列”为1,3,5,5,5,其“阶数”为3,若数列由1,2,3,4,5,6构成,则能构成“控制数列”的“阶数”为2的所有数列的首项和是______.15.函数的定义域为,导函数在内的图像如图所示,则函数在内有________个极大值点。16.若二项式(x﹣)n的展开式中只有第5项的二项式系数最大,则展开式中含x2项的系数为__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的上、下焦点分别为,上焦点到直线的距离为3,椭圆的离心率.(1)求椭圆的方程;(2)椭圆,设过点斜率存在且不为0的直线交椭圆于两点,试问轴上是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.18.(12分)已知函数,(为自然对数的底数,).(1)判断曲线在点处的切线与曲线的公共点个数;(2)当时,若函数有两个零点,求的取值范围.19.(12分)若,(Ⅰ)求证:;(Ⅱ)求证:;(Ⅲ)在(Ⅱ)中的不等式中,能否找到一个代数式,满足所求式?若能,请直接写出该代数式;若不能,请说明理由.20.(12分)在平面直角坐标系中,直线的参数方程为(为参数).在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为.(1)求直线的普通方程和圆的直角坐标方程;(2)设圆与直线交于,两点,若点的坐标为,求.21.(12分)如图所示,在直角坐标系中,曲线C由以原点为圆心,半径为2的半圆和中心在原点,焦点在x轴上的半椭圆构成,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(1)写出曲线C的极坐标方程;(2)已知射线与曲线C交于点M,点N为曲线C上的动点,求面积的最大值.22.(10分)如果球、正方体与等边圆柱(底面直径与母线相等)的体积相等,求它们的表面积的大小关系.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

分成两类方法相加.【详解】会用第一种方法的有5个人,选1个人完成这项工作有5种选择;会用第二种方法的有4个人,选1个人完成这项工作有4种选择;两者相加一共有9种选择,故选C.【点睛】本题考查分类加法计数原理.2、C【解析】

根据补集的定义可得结果.【详解】因为全集,,所以根据补集的定义得,故选C.【点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.3、A【解析】

根据题意,可以将原问题转化为方程在区间上有解,构造函数,利用导数分析的最大最小值,可得的值域,进而分析方程在区间上有解,必有,解之可得实数的取值范围.【详解】根据题意,若函数,与的图象上存在关于轴对称的点,则方程在区间上有解化简可得设,对其求导又由,在有唯一的极值点分析可得:当时,,为减函数,当时,,为增函数,故函数有最小值又由,比较可得,,故函数有最大值故函数在区间上的值域为若方程在区间有解,必有,则有则实数的取值范围是故选:A【点睛】本题考查在函数与方程思想下利用导数求最值进而表示参数取值范围问题,属于难题.4、C【解析】试题分析:依题意,,由直线参数方程几何意义得,选C.考点:直线参数方程几何意义5、C【解析】

试题分析:由三视图知几何体是一个简单的组合体,上面是一个四棱锥,四棱锥的底面是一个正方形,对角线长是,侧棱长,高是,下面是一个圆柱,圆柱的底面直径是,高是,所以组合体的体积是,故选C.考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图及其体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中根据三视图得出上面一个四棱锥、下面是一个圆柱组成的组合体,得到几何体的数量关系是解答的关键,属于基础题.6、A【解析】

根据进制的转化可判断A,由中位数的概念可判断B,写出逆命题,再判断其真假可判断C.根据全称命题的否定为特称命题,可判断D.【详解】A.,故正确.B.样本数据1,6,3,8,4,则中位数为4.故不正确.C.“若,则方程”的逆命题为:“方程,则”,为假命题,故不正确.D.若命题:,.则:,,故不正确.故选:A【点睛】本题考查了进制的转化、逆命题,中位数以及全称命题的否定,属于基础题.7、C【解析】

根据命题的否定形式可判断出命题①的正误;利用反证法可得出命题②的真假;设等比数列的公比为,利用等比数列的定义和等比中项的性质可判断出命题③的正误;利用特称命题的否定可判断出命题④的正误.【详解】对于命题①,由于可表示为且,该结论的否定为“或”,所以,命题①正确;对于命题②,假设且,由不等式的性质得,这与题设条件矛盾,假设不成立,故命题②正确;对于命题③,设等比数列、、、、的公比为,则,.由等比中项的性质得,则,命题③错误;对于命题④,由特称命题的否定可知,命题④为真命题,故选:C.【点睛】本题考查命题真假的判断,涉及反证法、等比中项以及特称命题的否定,理解这些知识点是解题的关键,考查分析问题和解决问题的能力,属于基础题.8、C【解析】

先用作为分段点,找到小于和大于的数.然后利用次方的方法比较大小.【详解】易得,而,故,所以本小题选C.【点睛】本小题主要考查指数式和对数式比较大小,考查指数函数和对数函数的性质,属于基础题.9、A【解析】试题分析:∵展开式的第二项的系数为-32,∴C31a2(-当a=1时,-2a考点:二项式定理、积分的运算.10、D【解析】

将函数表示为,结合三角函数的变换规律可得出正确选项.【详解】,因此,为了得到函数的图象,只需将函数的图象向右平移个单位长度,故选:D.【点睛】本题考查三角函数的平移变换,解决三角函数平移变换需要注意以下两个问题:(1)变换前后两个函数名称要保持一致;(2)平移变换指的是在自变量上变化了多少.11、D【解析】

首先对f(x)求导,将1代入,求出f′(1)的值,化简f′(x),最后将x=3代入即可.【详解】因为f′(x)=1x+1f′(1),令x=1,可得f′(1)=1+1f′(1),∴f′(1)=﹣1,∴f′(x)=1x+1f′(1)=1x﹣4,当x=3,f′(3)=1.故选:D【点睛】本题考查导数的运用,求出f′(1)是关键,是基础题.12、C【解析】

根据向量平行的坐标关系得解.【详解】,所以向量与平行.【点睛】本题考查向量平行的坐标表示,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用二项展开式的通项公式Tr+1中x的幂指数为0即可求得答案.【详解】,令=0,得:r=3,所以常数项为:=20,故答案为20.【点睛】本题考查二项式展开式中的特定项,利用其二项展开式的通项公式求得r=3是关键,考查运算能力,属于中档题.14、1044【解析】

根据新定义,分别利用排列、组合,求出首项为1,2,3,4,5的所有数列,再求出和即可.【详解】依题意得,首项为1的数列有1,6,a,b,c,d,故有种,首项为2的数列有2,1,6,b,c,d,或2,6,a,b,c,d,故有种,首项为3的数列有3,6,a,b,c,d,或3,1,6,b,c,d,或3,2,6,b,c,d或3,1,6,c,d或,3,2,1,6,c,d,故有种,首项为4的数列有种,即4,6,a,b,c,d,有种,4,1,6,b,c,d,或4,2,6,b,c,d,或4,3,6,b,c,d,有种,4,a,b,6,c,d,其中a,2,,则有种,4,a,b,c,6,d,其中a,b,2,,则有6种,首项为5的数列有种,即5,6,a,b,c,d,有种,5,1,6,b,c,d,或5,2,6,b,c,d,或5,3,6,b,c,d,或5,4,6,b,c,d有种,5,a,b,6,c,d,其中a,2,3,,则有种,5,a,b,c,6,d,其中a,b,2,3,,则有24种,5,a,b,c,d,6,其中a,b,c,2,3,,则有24种,综上,所有首项的和为.故答案为1044【点睛】本题主要考查了排列组合,考查了新定义问题,属于难题15、【解析】

先记导函数与轴交点依次是,且;根据导函数图像,确定函数单调性,进而可得出结果.【详解】记导函数与轴交点依次是,且;由导函数图像可得:当时,,则单调递增;当时,,则单调递减;当时,,则单调递增;当时,,则单调递减;所以,当或,原函数取得极大值,即极大值点有两个.故答案为2【点睛】本题主要考查导函数与原函数间的关系,熟记导数的方法研究函数单调性与极值即可,属于常考题型.16、1120【解析】由题意可得:n=8.∴通项公式,令=2,解得r=4.∴展开式中含x2项的系数为.故答案为:1120.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在点使得.【解析】分析:(1)根据已知列方程组,解方程组即得椭圆的方程.(2)先假设存在,再化简已知得到,所以存在.详解:(1)由已知椭圆方程为,设椭圆的焦点,由到直线的距离为3,得,又椭圆的离心率,所以,又,求得,.椭圆方程为.(2)存在.理由如下:由(1)得椭圆,设直线的方程为,联立,消去并整理得..设,,则,.假设存在点满足条件,由于,所以平分.易知直线与直线的倾斜角互补,∴.即,即.(*)将,代入(*)并整理得,∴,整理得,即,∴当时,无论取何值均成立.∴存在点使得.点睛:(1)本题主要考查椭圆的方程,考查直线和椭圆的位置关系,意在考查学生对这些基础知识的掌握能力及分析推理计算能力.(2)解答本题的关键是对的转化,由它画图可得平分,所以直线与直线的倾斜角互补,所以.18、(1)见解析(2)【解析】分析:(1)根据导数的几何意义可得切线方程,然后根据切线方程与联立得到的方程组的解的个数可得结论.(2)由题意求得的解析式,然后通过分离参数,并结合函数的图象可得所求的范围.详解:(1)∵,∴,∴.又,∴曲线在点处的切线方程为.由得.故,所以当,即或时,切线与曲线有两个公共点;当,即或时,切线与曲线有一个公共点;当,即时,切线与曲线没有公共点.(2)由题意得,由,得,设,则.又,所以当时,单调递减;当时,单调递增.所以.又,,结合函数图象可得,当时,方程有两个不同的实数根,故当时,函数有两个零点.点睛:函数零点个数(方程根的个数、两函数图象公共点的个数)的判断方法:(1)结合零点存在性定理,利用函数的性质确定函数零点个数;(2)构造合适的函数,判断出函数的单调性,利用函数图象公共点的个数判断方程根的个数或函数零点个数.19、(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ)答案见解析.【解析】分析:(Ⅰ)由题意结合绝对值不等式的性质即可证得题中的结论;(Ⅱ)由不等式的性质可证得.则.(Ⅲ)利用放缩法可给出结论:,或.详解:(Ⅰ)因为,且,所以,所以(Ⅱ)因为,所以.又因为,所以由同向不等式的相加性可将以上两式相加得.所以.所以.(i)因为,所以由同向不等式的相加性可将以上两式相加得.所以(ii)所以由两边都是正数的同向不等式的相乘性可将以上两不等式(i)(ii)相乘得.(Ⅲ)因为,,所以,或.(只要写出其中一个即可)点睛:本题主要考查不等式的性质,放缩法及其应用等知识,意在考查学生的转化能力和计算求解能力.20、(1)直线l的普通方程为;圆C的直角坐标方程为;(2).【解析】

(1)由直线的参数方程消去参数可直接得到普通方程;由极

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论