版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在一段线路中并联着两个独立自动控制的开关,只要其中一个开关能够闭合,线路就可以正常工作.设这两个开关能够闭合的概率分别为0.5和0.7,则线路能够正常工作的概率是()A.0.35 B.0.65 C.0.85 D.2.甲、乙等五个人排成一排,要求甲和乙不能相邻,则不同的排法种数为()A.48 B.60 C.72 D.1203.已知,命题“若”的否命题是A.若,则 B.若,则C.若,则 D.若,则4.如图所示的流程图中,输出的含义是()A.点到直线的距离B.点到直线的距离的平方C.点到直线的距离的倒数D.两条平行线间的距离5.已知某几何体的三视图如图所示,则该几何体的体积为A. B. C. D.6.阅读程序框图,运行相应的程序,则输出的的值为()A.72 B.90 C.101 D.1107.下列函数中既是奇函数,又在区间上是单调递减的函数为()A. B. C. D.8.已知a=log34,b=,c=,则a,b,c的大小关系为()A.a>b>c B.b>c>aC.c>a>b D.b>a>c9.对于实数,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为()A.8 B.6 C.4 D.211.复数(为虚数单位)的虚部是().A. B. C. D.12.曲线在点处的切线方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设实数x,y满足,则的最小值为___________.14.若方程有实根,则实数m的取值范围是______.15.已知函数f(x)=(x+2013)(x+2015)(x+2017)(x+2019)x∈R,则函数f(x)16.已知函数,若对任意,恒成立,则实数的取值范围是_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-4:坐标系与参数方程直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2(sinθ+cosθ),直线l的参数方程为:(Ⅰ)写出圆C和直线l的普通方程;(Ⅱ)点P为圆C上动点,求点P到直线l的距离的最小值.18.(12分)已知函数.(1)函数在区间上有两个不同的零点,求实数的取值范围;(2)若连续掷两次骰子(骰子六个表面上标注点数分别为1、2、3、4、5、6),得到点数分别为和,记事件在恒成立},求事件发生的概率.19.(12分)推广组合数公式,定义,其中,,且规定.(1)求的值;(2)设,当为何值时,函数取得最小值?20.(12分)如图,在四棱锥E﹣ABCD中,底面ABCD是边长为2的正方形,且DE=,平面ABCD⊥平面ADE,∠ADE=30°(1)求证:AE⊥平面CDE;(2)求AB与平面BCE所成角的正弦值.21.(12分)设点F1,F2分别是椭园C:x22t2+y2t2=1(t>0)的左、右焦点,且椭圆C上的点到F2(1)求椭圆C的方程;(2)当F1N⋅(3)当|F2N22.(10分)若,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:线路能够了正常工作的概率=,故选C.考点:独立事件,事件的关系与概率.2、C【解析】
因为甲和乙不能相邻,利用插空法列出不同的排法的算式,得到答案.【详解】甲、乙等五个人排成一排,要求甲和乙不能相邻,故先安排除甲、乙外的3人,然后安排甲、乙在这3人之间的4个空里,所以不同的排法种数为,故选C项.【点睛】本题考查排列问题,利用插空法解决不相邻问题,属于简单题.3、A【解析】
根据否命题的定义:即否定条件又否定结论,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是“若a+b+c≠3,则a2+b2+c2<3”故选A4、A【解析】
将代入中,结合点到直线的距离公式可得.【详解】因为,,所以,故的含义是表示点到直线的距离.故选A.【点睛】本题考查了程序框图以及点到直线的距离公式,属基础题.5、A【解析】
根据三视图可知几何体为三棱锥,根据棱锥体积公式求得结果.【详解】由三视图可知,几何体为三棱锥三棱锥体积为:本题正确选项:【点睛】本题考查棱锥体积的求解,关键是能够通过三视图确定几何体为三棱锥,且通过三视图确定三棱锥的底面和高.6、B【解析】输入参数第一次循环,,满足,继续循环第二次循环,,满足,继续循环第三次循环,,满足,继续循环第四次循环,,满足,继续循环第五次循环,,满足,继续循环第六次循环,,满足,继续循环第七次循环,,满足,继续循环第八次循环,,满足,继续循环第九次循环,,不满足,跳出循环,输出故选B点睛:此类问题的一般解法是严格按照程序框图设计的计算步骤逐步计算,逐次判断是否满足判断框内的条件,决定循环是否结束.要注意初始值的变化,分清计数变量与累加(乘)变量,掌握循环体等关键环节.7、B【解析】
由题意得,对于函数和函数都是非奇非偶函数,排除A、C.又函数在区间上单调递减,在区间单调递增,排除D,故选B.8、B【解析】
得出,从而得到的大小关系,得到答案.【详解】由题意,根据对数的运算可得,所以,故选B.【点睛】本题主要考查了对数的换底公式,以及对数的单调性、指数的运算的应用,其中解答中熟记对数的运算性质,合理运算时解答的关键,着重考查了推理与运算能力,属于基础题.9、A【解析】
先判断和成立的条件,然后根据充分性和必要性的定义可以选出正确答案.【详解】成立时,需要;成立时,需要,显然由能推出,但由不一定能推出,故“”是“”的充分不必要条件,故本题选A.【点睛】本题考查了充分不必要条件的判断,掌握对数的真数大于零这个知识点是解题的关键.10、C【解析】试题分析:如图,设抛物线方程为,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4,故选B.考点:抛物线的性质.11、A【解析】
利用复数的除法法则将复数表示为一般形式,可得出复数的虚部.【详解】,因此,该复数的虚部为,故选A.【点睛】本题考查复数的除法,考查复数的虚部,对于复数问题的求解,一般利用复数的四则运算法则将复数表示为一般形式,明确复数的实部与虚部进行求解,考查计算能力,属于基础题.12、C【解析】
求导,把分别代入导函数和原函数,得到斜率和切点,再计算切线方程.【详解】将代入导函数方程,得到将代入曲线方程,得到切点为:切线方程为:故答案选C【点睛】本题考查了曲线的切线,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由题意画出可行域,令,转化目标函数为,数形结合即可得解.【详解】由题意画出可行域,如图,令,则,数形结合可知,当直线过点A时,取最小值,由可得点,所以.故答案为:.【点睛】本题考查了简单的线性规划,属于基础题.14、.【解析】分析:将原式变形为=x+m,根据直线与椭圆相交相切的性质即可得出.详解:由题得若方程有实根等价于=x+m有解,y=等价于:表示x轴上方的部分椭圆,当直线y=x+m经过椭圆的又顶点(2,0)时为相交的一个临界值此时m=-2,当直线与椭圆的左上半部分相切时为第二个临界值,此时联立方程得:,求得:,因为与上半部分相交故直线与y轴的交点为正值,故m=,所以综合得:m的取值范围是.,故答案为.点睛:本题考查了直线与椭圆圆相交相切的性质、方程的根转化函数有解问题、数形结合思想方法,考查了推理能力与计算能力,属于中档题.15、-16.【解析】
根据fx解析式的对称性进行换元,令x=t-2016,得到ft-2016的最小值,由fx【详解】令x=t-2016,则f当t2=5故fx的最小值是-16【点睛】本题考查利用换元法求函数的最小值,二次函数求最值,属于中档题.16、【解析】
先将对任意,恒成立,转化为,利用基本不等式和函数单调性,分别研究对任意恒成立,和对任意恒成立,即可求出结果.【详解】等价于,即,①先研究对任意恒成立,即对任意恒成立,∵,当且仅当“”时取等号,∴;②再研究对任意恒成立,即对任意恒成立,∵函数在上单调递增,∴,∴;综上,实数的取值范围是.故答案为:.【点睛】本题主要考查不等式恒成立求参数的范围,熟记基本不等式以及函数单调性即可,属于常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(x-1)2+(y-1)2【解析】试题分析:(Ⅰ)由ρ2=x2+y2,x=ρcosθ,y=ρsinθ试题解析:(Ⅰ)由已知ρ=2(sinθ+cos所以x2+y2=2y+2x由x=2+t,y=-1+t,得y=-1+(x-2),所以直线l的普通方程为x-y-3=0(Ⅱ)由圆的几何性质知点P到直线l的距离的最小值为圆心C到直线l的距离减去圆的半径,令圆心C到直线l的距离为d,则d=|-1+1-3|所以最小值为32考点:极坐标方程化为直角坐标方程,参数方程化为普通方程,直线与圆位置关系18、(1)(2)【解析】
(1)函数在区间上有两个不同的零点,等价于方程有两不等正实数解,由二次方程区间根问题即可得解;(2)由不等式恒成立问题,可转化为,求出满足条件的基本事件的个数,从而求出满足条件的概率即可.【详解】解:(1)因为,由函数在区间上有两个不同的零点,则方程有两不等正实数解,由区间根问题可得,解得,即实数的取值范围为;(2)若连续掷两次骰子(骰子六个表面上标注点数分别为1、2、3、4、5、6),得到点数分别为和,计基本事件为,则基本事件的个数为,因为在恒成立,则在恒成立,即在成立,又,则,(当且仅当,即时取等号)即,满足此条件的基本事件有,共12个,由古典概型概率求法可得,事件发生的概率为,故事件发生的概率为.【点睛】本题考查了二次方程区间根问题、不等式恒成立问题及古典概型概率求法,属中档题.19、(1);(2)当时,取得最小值.【解析】
(1)根据题中组合数的定义计算出的值;(2)根据题中组合数的定义求出函数,然后利用基本不等式求出函数的最小值,并计算出等号成立对应的的值.【详解】(1)由题中组合数的定义得;(2)由题中组合数的定义得.因为,由基本不等式得,当且仅当时,等号成立,所以当时,取得最小值.【点睛】本题考查组合数的新定义,以及利用基本不等式求函数最值,解题的关键就是利用题中组合数的新定义进行化简、计算,考查运算求解能力,属于中等题.20、(1)详见解析;(2).【解析】
(1)根据线面垂直的判定定理,可直接得出结论成立;(2)以为原点,直线,分别为轴,过点作与直线平行的直线为轴,建立空间直角坐标系,分别求出直线的方向向量与平面的法向量,根据向量夹角的余弦值,即可求出结果.【详解】解:(1)证明:平面平面,交线为,且平面,从而,又,由余弦定理得,即又,平面.(2)以为原点,直线,分别为轴,过点作与直线平行的直线为轴,建立空间直角坐标系.则,,设,,,所以平面BCE的法向量与平面所成角的正弦弦值【点睛】本题主要考查线面垂直的判定,以及空间向量的方法求线面角,熟记线面垂直的判定定理,以及空间向量的方法求解,即可得出结果.21、(1)x28+【解析】
(1)根据椭圆的简单性质可得a-c=2t-t=22-2,求解(2)可设N(22cosθ,2sinθ)(3)向量F1M与向量F2N平行,不妨设λF1M=F2N,设M(【详解】(1)点F1、F2分别是椭圆C:x22t∵椭圆C上的点到点F2的距离的最小值为22-2解得t=2,∴椭圆的方程为x2(2)由(1)可得F1(-2,0),F2(2,0可设N(22∴F1N∵F1N解得cosθ=0,sinθ=1,∴△F1N(3)∵向量F1M与向量F2∵|F2N|-|F设M(x1,∴λ(x1+2)=x∵x22∴[λx∴4λ(λ+1)x1=(1-3λ)(λ+1)∴y12∴|F1M|=λ+12λ,∴(λ-1)⋅λ+12∴x1=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024学校维修合同书
- 2024年度网站域名合作契约
- 新建住宅购买合同样本
- 药品销售代理合同范例
- 高中生宿舍管理规定范本
- 建筑机械租赁合同简易格式
- 2024年资产抵债协议书
- 房屋房基流转协议书-合同范本
- 制造企业员工合同样本
- 产品加工合同典范
- 第16讲 国家出路的探索与挽救民族危亡的斗争 课件高三统编版(2019)必修中外历史纲要上一轮复习
- 机器学习 课件 第10、11章 人工神经网络、强化学习
- 北京市人民大学附属中学2025届高二生物第一学期期末学业水平测试试题含解析
- 书籍小兵张嘎课件
- 氢气中卤化物、甲酸的测定 离子色谱法-编制说明
- 2024秋期国家开放大学专科《机械制图》一平台在线形考(形成性任务四)试题及答案
- 2024年经济师考试-中级经济师考试近5年真题集锦(频考类试题)带答案
- 2024年黑龙江哈尔滨市通河县所属事业单位招聘74人(第二批)易考易错模拟试题(共500题)试卷后附参考答案
- 私募基金管理人-廉洁从业管理准则
- 房地产估价机构内部管理制度
- 艺术哲学:美是如何诞生的学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论