版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若6名男生和9名女生身高(单位:)的茎叶图如图,则男生平均身高与女生身高的中位数分别为()A.179,168 B.180,166 C.181,168 D.180,1682.已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy3.已知实数满足条件,且,则的取值范围是()A. B. C. D.4.某公司为确定明年投入某产品的广告支出,对近年的广告支出与销售额(单位:百万元)进行了初步统计,得到下列表格中的数据:经测算,年广告支出与年销售额满足线性回归方程,则的值为()A. B. C. D.5.函数的最大值为()A. B.1 C.4033 D.6.如图所示阴影部分是由函数、、和围成的封闭图形,则其面积是()A. B. C. D.7.已知随机变量Xi满足P(Xi=1)=pA.E(X1B.E(X1C.E(X1D.E(X18.已知集合,,则()A. B. C. D.9.已知,都是实数,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.如图,用5种不同的颜色把图中、、、四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有()A.200种 B.160种 C.240种 D.180种11.若曲线y=x3﹣2x2+2在点A处的切线方程为y=4x﹣6,且点A在直线mx+ny﹣2=0(其中m>0,n>0)上,则()A.m+7n﹣1=0 B.m+n﹣1=0C.m+13n﹣3=0 D.m+n﹣1=0或m+13n﹣3=012.已知是虚数单位,则在复平面内对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.已知,则的取值范围是________.14._______.15.已知函数,若函数有三个不同的零点,则实数的取值范围是__________.16.等差数列中,若,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知集合(1)若,求实数的值;(2)若命题命题且是的充分不必要条件,求实数的取值范围.18.(12分)已知函数(I)求在(为自然对数的底数)处的切线方程.(II)求的最小值.19.(12分)已知函数当时,讨论的导函数在区间上零点的个数;当时,函数的图象恒在图象上方,求正整数的最大值.20.(12分)已知函数.(1)求函数的单调区间;(2)若恒成立,试确定实数的取值范围.21.(12分)盒子中放有大小形状完全相同的个球,其中个红球,个白球.(1)某人从这盒子中有放回地随机抽取个球,求至少抽到个红球的概率;(2)某人从这盒子中不放回地从随机抽取个球,记每抽到个红球得红包奖励元,每抽到个白球得到红包奖励元,求该人所得奖励的分布列和数学期望.22.(10分)某工厂拟生产并销售某电子产品m万件(生产量与销售量相等),为扩大影响进行销售,促销费用x(万元)满足(其中,为正常数).已知生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,此工厂所获利润最大?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据平均数和中位数的定义即可得出结果.【详解】6名男生的平均身高为,9名女生的身高按由低到高的顺序排列为162,163,166,167,168,170,176,184,185,故中位数为168.故选:C.【点睛】本题考查由茎叶图求平均数和中位数,难度容易.2、D【解析】因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.3、D【解析】
如图所示,画出可行域和目标函数,根据平移得到答案.【详解】如图所示,画出可行域和目标函数,,则,表示直线轴截距的相反数,根据图像知:当直线过,即,时有最小值为;当直线过,即时有最大值为,故.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.4、D【解析】分析:求出,代入回归方程计算,利用平均数公式可得出的值.详解:,,,解得,故选D.点睛:本题主要考查平均数公式的应用,线性回归方程经过样本中心的性质,意在考查综合利用所学知识解决问题的能力,属于基础题.5、C【解析】,选C.6、B【解析】
根据定积分的几何意义得到阴影部分的面积。【详解】由定积分的几何意义可知:阴影部分面积故选B.【点睛】本题考查定积分的几何意义和积分运算,属于基础题.7、C【解析】
根据题目已知条件写出X1,【详解】依题意可知:X01P1-pX01P1-p由于12<p1<p2<1,不妨设【点睛】本小题主要考查随机变量分布列期望和方差的计算,考查分析与阅读理解能力,属于中档题.8、A【解析】分析:根据题意,求得集合,再利用集合的运算,即可求解.详解:由题意,,所以,故选A.点睛:本题主要考查了集合的运算问题,其中正确求解集合是解答的关键,着重考查了推理与运算能力.9、D【解析】;,与没有包含关系,故为“既不充分也不必要条件”.10、D【解析】
根据题意可知,要求出给四个区域涂色共有多少种方法,需要分步进行考虑;对区域A、B、C、D按顺序着色,推出其各有几种涂法,利用分步乘法计数原理,将各区域涂色的方法数相乘,所得结果即为答案.【详解】涂有5种涂法,有4种,有3种,因为可与同色,故有3种,∴由分步乘法计数原理知,不同涂法有种.故答案选D.【点睛】本题考查了排列组合中的涂色问题,处理区域涂色问题的基本方法为分步乘法计数原理.11、B【解析】
设的导数,可得切线的斜率为,然后根据切线方程尽量关于的方程组,再结合条件,即可求得的关系,得到答案.【详解】设的导数,可得切线的斜率为,又由切线方程为,所以,解得,因为点在直线上,所以,故选B.【点睛】本题主要考查了导数的几何意义的应用,其中解答中熟记导数的几何意义,利用切线方程列出相应的方程组求解是解答的关键,着重考查了推理与计算能力,属于基础题.12、A【解析】
分子分母同时乘以,化简整理,得出,再判断象限.【详解】,在复平面内对应的点为(),所以位于第一象限.故选A.【点睛】本题考查复数的基本运算及复数的几何意义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
可设所求cosαsinβ=x,与已知的等式sinαcosβ=相乘,利用二倍角的正弦函数公式的逆运算化简为sin2α•sin2β=2x后,根据三角函数的值域的范围得到关于x的不等式,求出解集即可得到cosαsinβ的范围【详解】设x=cosα•sinβ,sinα•cosβ•cosα•sinβ=x,即sin2α•sin2β=2x.由|sin2α•sin2β|≤1,得|2x|≤1,∴﹣≤x≤.故答案为:[﹣,].【点睛】考查学生灵活运用二倍角的三角函数公式化简求值,会根据三角函数的值域范围列出不等式.本题的突破点就是根据值域列不等式.14、4【解析】分析:利用微积分基本定理直接求解即可.详解:即答案为4.点睛:本题考查微积分基本定理的应用,属基础题.15、【解析】
函数有三个不同的零点等价于的图象与直线有三个不同交点,数形结合即可得到结果.【详解】函数有三个不同的零点等价于的图象与直线有三个不同交点,作出函数的图象:由图易得:故答案为【点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.16、10.【解析】
直接由等差数列的通项公式结合已知条件列式求解的值.【详解】在等差数列中,由,,,且,所以,所以.故答案为:10.【点睛】本题考查等差数列的通项公式,考查用基本量法求.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)或.【解析】分析:(1)分a>0和a<0两种情况讨论是否存在满足条件的实数a的值,综合讨论结果,可得答案;(2)若p是q充分不必要条件,则A⊊B,分类讨论,可得满足条件的a的取值范围.详解:(1)当时当时显然故时,,(2)当时,则解得当时,则综上是的充分不必要条件,实数的取值范围是或.点睛:注意区别:“命题是命题的充分不必要条件”与“命题的充分不必要条件是命题”18、(I);(II)【解析】
(I)对函数求导,把分别代入导数与原函数中求出,,由点斜式即可得到切线方程;(II)求出函数的定义域,分别令导数大于零和小于零,结合定义域,解出的范围即可得到函数的单调区间,由此求出的最小值。【详解】(I),故,又故在处的切线方程为:,即.(II)由题可得的定义域为,令,故在上单减,在上单增,【点睛】本题主要考查利用导数求函数上某点切线方程,以及函数单调区间和最值,在求单调区间注意结合定义域研究,属于基础题。19、(1)当时,在存在唯一零点;当时,在没有零点(2)【解析】
(1)首先求,令,然后求,讨论当时,,判断函数的单调性和端点值,判断函数是否有零点;当时,同样是判断函数的单调性,然后结合零点存在性定理,可判断函数是否存在零点;(2)由,参变分离求解出在上恒成立,转化为求函数的最小值,设,,利用导数判断函数的单调性,求得函数的最小值.【详解】解:(1).令,,则,①当时,当,,单调递减,又,所以对时,,此时在不存在零点.②当时,当,,单调递减.又因为,取,则,即.根据零点存在定理,此时在存在唯一零点.综上,当时,在存在唯一零点;当时,在没有零点.(2)由已知得在上恒成立.设,,则因为时,所以,设,,所以在上单调递增,又,,由零点存在定理,使得,即,,且当时,,,单调递减;当时,,,单调递增.所以,又在上单调递减,而,所以,因此,正整数的最大值为.【点睛】本题第一问考查了判断函数零点个数的问题,这类问题需判断函数的单调性,再结合函数零点存在性定理判断,已知函数是单调函数的前提下,需满足,才可以说明区间内存在唯一零点,但难点是有时候或不易求得,本题中,证明的过程中,用到了,以及只有时,才有,这种赋端点值是比较难的.20、(1)函数的递增区间为,函数的递减区间为;(2)【解析】试题分析:(1)由已知得x>1,,对k分类讨论,由此利用导数性质能求出函数f(x)的单调区间.(2)由得,即求的最大值.试题解析:解:(1)函数的定义域为,,当时,,函数的递增区间为,当时,,当时,,当时,,所以函数的递增区间为,函数的递减区间为.(2)由得,令,则,当时,,当时,,所以的最大值为,故.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.21、(1);(2)42元.【解析】
(1)分为三种情况,即抽到个红球,抽到个红球和抽到个红球,概率相加得到答案.(2)随机变量可能的取值为,计算每个数对应概率,得到分布列,计算数学期望得到答案.【详解】(1)记至少抽到个红球的事件为,法1:至少抽到个红球的事件,分为三种情况,即抽到个红球,抽到个红球和抽到个红球,每次是否取得红球是相互独立的,且每次取到红球的概率均为,所以,答:至少抽到个红球的概率为.法2:至少抽到个红球的事件的对立事件为次均没有取到红球(或次均取到白球),每次取到红球的概率均为(每次取到白球的概率均为),所以答:至少抽到个红球的概率为.(2)由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度货物出口合同标的及出口手续
- 二零二四年度技术服务合同技术咨询服务合同04年专用
- 底薪加提成薪资制度合同(2篇)
- 二零二四年度货物采购合同(含详细技术参数与交付时间表)
- 二零二四年度电商企业软件许可合同
- 内控优化咨询合作协议
- 长期借款协议续借格式
- 建设工程施工合同(示范文本)
- 建筑钢管架劳务分包合同
- 生石灰购销意向协议
- 电站库区清淤方案
- 2023-2024年四川省成都市某校高一上学期12月阶段性测试物理试题 (解析版)
- 体育课堂数字化教学设计方案
- 2024年中铁高新工业股份有限公司招聘笔试参考题库含答案解析
- 客运员出站口岗位规范
- 物业安管主管的安全监督与检查技巧
- 大型医院检验科完整SOP程序文件
- 纯水机结构及工作原理
- 大红袍知识讲座
- 20.《美丽的小兴安岭》课件
- 《影响力读后感》课件
评论
0/150
提交评论